Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov-Dec;58(6):475-9.
doi: 10.1111/j.1550-7408.2011.00573.x. Epub 2011 Sep 7.

Free sterol composition of species in the dinoflagellate genus Pyrocystis: a spectrum of sterol diversity

Affiliations

Free sterol composition of species in the dinoflagellate genus Pyrocystis: a spectrum of sterol diversity

Jeremy L Dahmen et al. J Eukaryot Microbiol. 2011 Nov-Dec.

Abstract

The dinoflagellate genus Pyrocystis includes a small number of marine species, which spend the majority of their life cycles as nonmotile cells within a carbohydrate sheath, and which are found ubiquitously throughout the world's oceans. The biochemistry of this model dinoflagellate genus has been widely studied due to its ability to bioluminesce. However, Pyrocystis has been comparatively understudied with respect to its lipid biochemistry, in particular that of sterols. To date, examination of the sterols of Pyrocystis has focused primarily upon Pyrocystis lunula, which produces cholesterol and 4,24-dimethyl-5α-cholestan-3β-ol as its predominant sterols, while it lacks the common dinoflagellate sterol, dinosterol. We have examined the sterol composition of the two other commercially available species of Pyrocystis, Pyrocystis fusiformis and Pyrocystis noctiluca. Pyrocystis noctiluca possesses dinosterol as its most abundant sterol, while P. fusiformis possesses dinosterol and 4,24-dimethyl-5α-cholestan-3β-ol as the predominant sterols, placing it at an intermediate position between P. lunula and P. noctiluca, as based on sterol composition. The potential limitations of the dinoflagellate sterol biomarker dinosterol are also explored in this study due to its notable absence in P. lunula.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources