Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Aug 15;7(4):357-67.
doi: 10.5664/JCSM.1190.

Factors that may influence the classification of sleep-wake by wrist actigraphy: the MrOS Sleep Study

Collaborators, Affiliations
Comparative Study

Factors that may influence the classification of sleep-wake by wrist actigraphy: the MrOS Sleep Study

Terri Blackwell et al. J Clin Sleep Med. .

Abstract

Study objectives: Total sleep time (TST), sleep efficiency (SE), sleep latency (SOL) and wake after sleep onset (WASO) assessed by actigraphy gathered in 3 different modes were compared to polysomnography (PSG) measurements to determine which mode corresponded highest to PSG. Associations of measurement error for TST (PSG-actigraphy) with demographics, medical history, exam data, and sleep characteristics were examined.

Methods: Participants underwent in-home 12-channel PSG. Actigraphy data were collected in 3 modes: proportional integration mode (PIM), time above threshold (TAT) and zero crossings mode (ZCM). The analysis cohort was a subgroup of 889 men (mean age 76.4 years) from the MrOS Sleep Study with concurrently measured PSG and actigraphy. Intraclass correlation coefficients (ICCs) were used to compare the association between PSG and actigraphy.

Results: The PIM mode of actigraphy corresponded moderately to PSG for all measures (ICCs 0.32 to 0.57), TAT a little lower (ICCs 0.17 to 0.47), and ZCM lower still (ICCs 0.16 to 0.33). The PIM mode corresponded best to PSG (ICCs TST 0.57; SE 0.46; SOL 0.23; WASO 0.54), though the estimations from PSG and PIM mode differed significantly (p < 0.01). The PIM mode overestimated TST by 13.2 min on average, but underestimated TST for those in certain subgroups: those with excessive daytime sleepiness, less sleep fragmentation, or more sleep disordered breathing (p < 0.05).

Conclusions: Sleep parameters from the PIM and TAT modes of actigraphy corresponded reasonably well to PSG in this population, with the PIM mode correlating highest. Systematic measurement error was observed within subgroups with different sleep characteristics.

Keywords: Actigraphy; polysomnography; sleep efficiency; total sleep time; validation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Bland and Altman plots of total sleep time

References

    1. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep. 2003;26:342–92. - PubMed
    1. Morgenthaler T, Alessi C, Friedman L, et al. Standards of Practice Committee; American Academy of Sleep Medicine. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: an update for 2007. Sleep. 2007;30:519–29. - PubMed
    1. Blackwell T, Redline S, Ancoli-Israel S, et al. Study of Osteoporotic Fractures Research Group. Comparison of sleep parameters from actigraphy and polysomnography in older women: the SOF study. Sleep. 2008;31:283–91. - PMC - PubMed
    1. de Souza L, Benedito-Silva AA, Pires ML, Poyares D, Tufik S, Calil HM. Further validation of actigraphy for sleep studies. Sleep. 2003;26:81–5. - PubMed
    1. Hedner J, Pillar G, Pittman SD, Zou D, Grote L, White DP. A novel adaptive wrist actigraphy algorithm for sleep-wake assessment in sleep apnea patients. Sleep. 2004;27:1560–6. - PubMed

Publication types