Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 15;45(20):8826-33.
doi: 10.1021/es202445w. Epub 2011 Sep 16.

Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite

Affiliations

Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite

Jeffrey G Catalano et al. Environ Sci Technol. .

Abstract

Biogeochemical iron cycling often generates systems where aqueous Fe(II) and solid Fe(III) oxides coexist. Reactions between these species result in iron oxide surface and phase transformations, iron isotope fractionation, and redox transformations of many contaminant species. Fe(II)-induced recrystallization of goethite and hematite has recently been shown to cause the repartitioning of Ni(II) at the mineral-water interface, with adsorbed Ni incorporating into the iron oxide structure and preincorporated Ni released back into aqueous solution. However, the effect of Fe(II) on the fate and speciation of redox inactive species incompatible with iron oxide structures is unclear. Arsenate sorption to hematite and goethite in the presence of aqueous Fe(II) was studied to determine whether Fe(II) causes substantial changes in the sorption mechanisms of such incompatible species. Sorption isotherms reveal that Fe(II) minimally alters macroscopic arsenate sorption behavior except at circumneutral pH in the presence of elevated concentrations (10⁻³ M) of Fe(II) and at high arsenate loadings, where a clear signature of precipitation is observed. Powder X-ray diffraction demonstrates that the ferrous arsenate mineral symplesite precipitates under such conditions. Extended X-ray absorption fine structure spectroscopy shows that outside this precipitation regime arsenate surface complexation mechanisms are unaffected by Fe(II). In addition, arsenate was found to suppress Fe(II) sorption through competitive adsorption processes before the onset of symplesite precipitation. This study demonstrates that the sorption of species incompatible with iron oxide structure is not substantially affected by Fe(II) but that such species may potentially interfere with Fe(II)-iron oxide reactions via competitive adsorption.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources