Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Nov;12(11):1805-22.
doi: 10.2174/138920111798377067.

Nucleic acid-based technologies in therapy of malignant gliomas

Affiliations
Review

Nucleic acid-based technologies in therapy of malignant gliomas

Monika Piwecka et al. Curr Pharm Biotechnol. 2011 Nov.

Abstract

Malignant gliomas are the deadliest brain tumors, which are characterized by highly invasive growth, a rampant genetic instability and intense resistance to apoptosis. Such an aggressive behavior of malignant gliomas is reflected in the resistance to chemo- and radiotherapy and weak prognosis in spite of cytoreduction through surgery. Brain tumors preferentially express a number of specific protein and RNA markers, that may be exploited as potential therapeutic targets in design of the new treatment modalities based on nucleic acids. For almost three decades, a possibility to apply DNA and RNA molecules as anticancer therapeutics have been studied. A variety of antisense oligonucleotides, ribozymes, DNAzymes, and aptamers can be designed to trigger the sequence-specific inhibition of particular mRNA of interest. RNA interference (RNAi) is the latest and the most promising technique in the long line of nucleic acid-based therapeutic technologies. Recently, we designed and implemented the experimental therapy of patients suffering from malignant brain tumors based on application of double-stranded RNA (dsRNA) specific for tenascin-C (TN-C) mRNA. That therapeutic agent, called ATN-RNA, induces RNAi pathway to inhibit the synthesis of TN-C, the extracellular matrix protein which is highly overexpressed in brain tumor tissue. In the chapter specific problems of application of nucleic acid-based technologies in glioma tumors treatment will be discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms