Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 18:1:34.
doi: 10.1186/2110-5820-1-34.

New materials and devices for preventing catheter-related infections

Affiliations

New materials and devices for preventing catheter-related infections

Jean-François Timsit et al. Ann Intensive Care. .

Abstract

Catheters are the leading source of bloodstream infections for patients in the intensive care unit (ICU). Comprehensive unit-based programs have proven to be effective in decreasing catheter-related bloodstream infections (CR-BSIs). ICU rates of CR-BSI higher than 2 per 1,000 catheter-days are no longer acceptable. The locally adapted list of preventive measures should include skin antisepsis with an alcoholic preparation, maximal barrier precautions, a strict catheter maintenance policy, and removal of unnecessary catheters. The development of new technologies capable of further decreasing the now low CR-BSI rate is a major challenge. Recently, new materials that decrease the risk of skin-to-vein bacterial migration, such as new antiseptic dressings, were extensively tested. Antimicrobial-coated catheters can prevent CR-BSI but have a theoretical risk of selecting resistant bacteria. An antimicrobial or antiseptic lock may prevent bacterial migration from the hub to the bloodstream. This review discusses the available knowledge about these new technologies.

PubMed Disclaimer

References

    1. Suetens C, Morales I, Savey A, Palomar M, Hiesmayr M, Lepape A, Gastmeier P, Schmit JC, Valinteliene R, Fabry J. European surveillance of ICU-acquired infections (HELICS-ICU): methods and main results. J Hosp Infect. 2007;65(Suppl 2):171–173. - PubMed
    1. Siempos II, Kopterides P, Tsangaris I, Dimopoulou I, Armaganidis AE. Impact of catheter-related bloodstream infections on the mortality of critically ill patients: a meta-analysis. Crit Care Med. 2009;37:2283–2289. doi: 10.1097/CCM.0b013e3181a02a67. - DOI - PubMed
    1. Soufir L, Timsit JF, Mahe C, Carlet J, Regnier B, Chevret S. Attributable morbidity and mortality of catheter-related septicemia in critically ill patients: a matched, risk-adjusted, cohort study. Infect Control Hosp Epidemiol. 1999;20:396–401. doi: 10.1086/501639. - DOI - PubMed
    1. Warren DK, Quadir WW, Hollenbeak CS, Elward AM, Cox MJ, Fraser VJ. Attributable cost of catheter-associated bloodstream infections among intensive care patients in a nonteaching hospital. Crit Care Med. 2006;34:2084–2089. doi: 10.1097/01.CCM.0000227648.15804.2D. - DOI - PubMed
    1. Mermel LA. What is the predominant source of intravascular catheter infections? Clin Infect Dis. 2011;52:211–212. doi: 10.1093/cid/ciq108. - DOI - PubMed

LinkOut - more resources