Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation
- PMID: 21909256
- PMCID: PMC3164635
- DOI: 10.1371/journal.ppat.1002179
Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation
Abstract
Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures







Comment in
-
Fungal pathogenesis: hungry fungus eats nematode.Nat Rev Microbiol. 2011 Oct 3;9(11):766-7. doi: 10.1038/nrmicro2674. Nat Rev Microbiol. 2011. PMID: 21963804 No abstract available.
Similar articles
-
Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora.Environ Microbiol Rep. 2013 Aug;5(4):511-7. doi: 10.1111/1758-2229.12054. Epub 2013 Apr 19. Environ Microbiol Rep. 2013. PMID: 23864564
-
Integrated Metabolomics and Morphogenesis Reveal Volatile Signaling of the Nematode-Trapping Fungus Arthrobotrys oligospora.Appl Environ Microbiol. 2018 Apr 16;84(9):e02749-17. doi: 10.1128/AEM.02749-17. Print 2018 May 1. Appl Environ Microbiol. 2018. PMID: 29453265 Free PMC article.
-
Transcriptomic Analysis Reveals That Rho GTPases Regulate Trap Development and Lifestyle Transition of the Nematode-Trapping Fungus Arthrobotrys oligospora.Microbiol Spectr. 2022 Feb 23;10(1):e0175921. doi: 10.1128/spectrum.01759-21. Epub 2022 Jan 12. Microbiol Spectr. 2022. PMID: 35019695 Free PMC article.
-
Predator-prey interactions of nematode-trapping fungi and nematodes: both sides of the coin.Appl Microbiol Biotechnol. 2018 May;102(9):3939-3949. doi: 10.1007/s00253-018-8897-5. Epub 2018 Mar 9. Appl Microbiol Biotechnol. 2018. PMID: 29523933 Review.
-
Nematode-Trapping Fungi.Microbiol Spectr. 2017 Jan;5(1):10.1128/microbiolspec.funk-0022-2016. doi: 10.1128/microbiolspec.FUNK-0022-2016. Microbiol Spectr. 2017. PMID: 28128072 Free PMC article. Review.
Cited by
-
AoPrdx2 Regulates Oxidative Stress, Reactive Oxygen Species, Trap Formation, and Secondary Metabolism in Arthrobotrys oligospora.J Fungi (Basel). 2024 Jan 28;10(2):110. doi: 10.3390/jof10020110. J Fungi (Basel). 2024. PMID: 38392782 Free PMC article.
-
Endosymbiotic bacteria within the nematode-trapping fungus Arthrobotrys musiformis and their potential roles in nitrogen cycling.Front Microbiol. 2024 Jan 29;15:1349447. doi: 10.3389/fmicb.2024.1349447. eCollection 2024. Front Microbiol. 2024. PMID: 38348183 Free PMC article.
-
Molecular Defense Response of Bursaphelenchus xylophilus to the Nematophagous Fungus Arthrobotrys robusta.Cells. 2023 Feb 8;12(4):543. doi: 10.3390/cells12040543. Cells. 2023. PMID: 36831210 Free PMC article.
-
Roles of the Fungal-Specific Lysine Biosynthetic Pathway in the Nematode-Trapping Fungus Arthrobotrys oligospora Identified through Metabolomics Analyses.J Fungi (Basel). 2023 Feb 5;9(2):206. doi: 10.3390/jof9020206. J Fungi (Basel). 2023. PMID: 36836320 Free PMC article.
-
Role of Low-Affinity Calcium System Member Fig1 Homologous Proteins in Conidiation and Trap-Formation of Nematode-trapping Fungus Arthrobotrys oligospora.Sci Rep. 2019 Mar 14;9(1):4440. doi: 10.1038/s41598-019-40493-x. Sci Rep. 2019. PMID: 30872626 Free PMC article.
References
-
- Pramer D. Nematode-trapping fungi. Science. 1964;144:382–388. - PubMed
-
- Nordbring-Hertz B, Jansson HB, Tunlid A. Chichester: John Wiley & Sons, Ltd; 2006. Nematophagous fungi. In Encyclopedia of life sciences.
-
- Schmidt AR, Dörfelt H, Perrichot V. Carnivorous fungi from Cretaceous Amber. Science. 2007;318:1743. - PubMed
-
- Nordbring-Hertz B. Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora-an extensive plasticity of infection structures. Mycologist. 2004;18:125–133.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous