Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;26(6):1724-9.
doi: 10.1519/JSC.0b013e318234eb6f.

The effects of endurance, strength, and power training on muscle fiber type shifting

Affiliations
Review

The effects of endurance, strength, and power training on muscle fiber type shifting

Jacob M Wilson et al. J Strength Cond Res. 2012 Jun.

Abstract

Muscle fibers are generally fractionated into type I, IIA, and IIX fibers. Type I fibers specialize in long duration contractile activities and are found in abundance in elite endurance athletes. Conversely type IIA and IIX fibers facilitate short-duration anaerobic activities and are proportionally higher in elite strength and power athletes. A central area of interest concerns the capacity of training to increase or decrease fiber types to enhance high-performance activities. Although interconversions between type IIA and IIX are well recognized in the literature, there are conflicting studies regarding the capacity of type I and II fibers to interconvert. Therefore, the purpose of this article is to analyze the effects of various forms of exercise on type I and type II interconversions. Possible variables that may increase type II fibers and decrease type I fibers are discussed, and these include high velocity isokinetic contractions; ballistic movements such as bench press throws and sprints. Conversely, a shift from type II to type I fibers may occur under longer duration, higher volume endurance type events. Special care is taken to provide practical applications for both the scientist and the athlete.

PubMed Disclaimer