Side population rather than CD133(+) cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells
- PMID: 21917149
- PMCID: PMC3180433
- DOI: 10.1186/1476-4598-10-112
Side population rather than CD133(+) cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells
Abstract
Background: Subpopulations of cancer cells with the capacity of generating solid tumors have been characterized. In various cancer types, including prostate cancer cells, a side population (SP) and CD133-expressing cells have been proposed as containing a population cancer cells with stem-like ability. Therefore the aim of this work was to determine, in prostate cancer cell lines, the frequency and tumorigenic potential of SP and CD133+ cells.
Results: In vitro 2D colony-forming assay and sphere-forming assay, Flow cytometry analysis and magnetic cell sorting were utilized to sort CD133+, CD133- and Side population (SP) cells. Our findings indicate that CD44 and integrin α-6 are uniformly expressed in the hTERT cell lines; however, CD133 is expressed only in a small population (< 0.1%). FACS-sorted CD133+ and CD133- cells exhibited similar tumorigenicity in vitro and in vivo. Additionally, for the hTERT cells, SP rather than CD133 expression showed an 8-fold enhanced tumorigenic potential. The data suggest that SP cells, rather than those with CD133 marker, contain the rare population of CSC capable of producing prostate tumors.
Conclusion: Collectively, our data suggest that although CD133 is expressed only in a small population of hTERT-immortalized prostate cancer cells, it is not likely to be associated with stem cells, as CD133- and CD133+ cells exhibited similar tumorigenicity. However, SP isolated cells, appear to be enriched with tumorigenic stem-like cells capable of generating palpable tumors.
Figures





References
-
- Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90:5013–5021. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous