Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 27;115(42):11788-95.
doi: 10.1021/jp2049469. Epub 2011 Oct 4.

Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material

Affiliations

Computational studies on the crystal structure, thermodynamic properties, detonation performance, and pyrolysis mechanism of 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane as a novel high energy density material

Fang Wang et al. J Phys Chem A. .

Abstract

Studies have suggested that octanitrocubane (ONC) is one of the most powerful non-nuclear high energy density material (HEDM) currently known. 2,4,6,8-Tetranitro-1,3,5,7-tetraazacubane (TNTAC) studied in this work may also be a novel HEDM due to its high nitrogen content and crystal density. Density functional theory and molecular mechanics methods have been employed to study the crystal structure, IR spectrum, electronic structure, thermodynamic properties, gas-phase and condensed-phase heat of formation, detonation performance, and pyrolysis mechanism of TNTAC. The TNTAC has a predicted density of about 2.12 g/cm(3), and its detonation velocity (10.42 km/s) and detonation pressure (52.82 GPa) are higher than that of ONC. The crystalline packing is P2(1)2(1)2(1), and the corresponding cell parameters are Z = 4, a = 8.87 Å, b = 8.87 Å, and c = 11.47 Å. Both the density of states of the predicted crystal and the bond dissociation energy of the molecule in gas phase show that the cage C-N bond is the trigger bond during thermolysis. The activation energy of the pyrolysis initiation reaction obtained from the B3LYP/6-311++G(2df,2p) level is 125.98 kJ/mol, which indicates that TNTAC meets the thermal stability request as an exploitable HEDM.

PubMed Disclaimer

LinkOut - more resources