HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro
- PMID: 21920521
- PMCID: PMC3925803
- DOI: 10.1016/j.atherosclerosis.2011.08.033
HGF/c-Met signalling promotes Notch3 activation and human vascular smooth muscle cell osteogenic differentiation in vitro
Abstract
Objectives: Vascular calcification is a major clinical problem and elucidating the underlying mechanism is important to improve the prognosis of patients with cardiovascular disease. We aimed to elucidate the role and mechanism of action of Hepatocyte Growth Factor (HGF)/c-Met signalling in vascular calcification and establish whether blocking this pathway could prevent mineralisation of vascular smooth muscle cells (VSMCs) in vitro.
Methods and results: We demonstrate increased HGF secretion and c-Met up-regulation and phosphorylation during VSMC osteogenic differentiation. Adenoviral-mediated over-expression of HGF (AdHGF) in VSMCs accelerated mineralisation, shown by alizarin red staining, and significantly increased (45)Calcium incorporation (1.96 ± 0.54-fold [P < 0.05]) and alkaline phosphatase (ALP) activity (3.01 ± 0.8-fold [P < 0.05]) compared to controls. AdHGF also significantly elevated mRNA expression of bone-related proteins, Runx2, osteocalcin, BMP2 and osterix in VSMCs. AdHGF-accelerated mineralisation correlated with increased Akt phosphorylation, nuclear translocation of Notch3 intracellular domain (N3IC) and up-regulation of the Notch3 target protein, HES1. In contrast, adenoviral-mediated over-expression of the HGF antagonist, NK4, markedly attenuated VSMC mineralisation, and reduced c-Met phosphorylation, Akt activation and HES1 protein expression compared to AdHGF-treated cells. Furthermore, the Notch inhibitor, DAPT, attenuated N3IC nuclear translocation and AdHGF-induced mineralisation.
Conclusion: We demonstrate HGF induces VSMC osteogenic differentiation via c-Met/Akt/Notch3 signalling, highlighting these pathways as potential targets for intervention of vascular calcification.
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Figures





References
-
- Liu Y., Shanahan C.M. Signalling pathways and vascular calcification. Front Biosci. 2011;16:1302–1314. - PubMed
-
- Heideman D.A., Overmeer R.M., van B.V. Inhibition of angiogenesis and HGF-cMET-elicited malignant processes in human hepatocellular carcinoma cells using adenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther. 2005;12:954–962. - PubMed
-
- Matsumoto K., Nakamura T. NK4 gene therapy targeting HGF-Met and angiogenesis. Front Biosci. 2008;13:1943–1951. - PubMed
-
- Satani K., Konya H., Hamaguchi T. Clinical significance of circulating hepatocyte growth factor, a new risk marker of carotid atherosclerosis in patients with Type 2 diabetes. Diab Med. 2006;23:617–622. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous