Functional consequences of developmentally regulated alternative splicing
- PMID: 21921927
- PMCID: PMC3321218
- DOI: 10.1038/nrg3052
Functional consequences of developmentally regulated alternative splicing
Abstract
Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.
Figures
References
-
- Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40:1413–1415. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
