The emerging genetics of primary ciliary dyskinesia
- PMID: 21926394
- PMCID: PMC3209577
- DOI: 10.1513/pats.201103-023SD
The emerging genetics of primary ciliary dyskinesia
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive, rare, genetically heterogeneous condition characterized by oto-sino-pulmonary disease together with situs abnormalities (Kartagener syndrome) owing to abnormal ciliary structure and function. Most patients are currently diagnosed with PCD based on the presence of defective ciliary ultrastructure. However, diagnosis often remains challenging due to variability in the clinical phenotype and ciliary ultrastructural changes. Some patients with PCD have normal ciliary ultrastructure, which further confounds the diagnosis. A genetic test for PCD exists but is of limited value because it investigates only a limited number of mutations in only two genes. The genetics of PCD is complicated owing to the complexity of axonemal structure that is highly conserved through evolution, which is comprised of multiple proteins. Identifying a PCD-causing gene is challenging due to locus and allelic heterogeneity. Despite genetic heterogeneity, multiple tools have been used, and there are 11 known PCD-causing genes. All of these genes combined explain approximately 50% of PCD cases; hence, more genes need to be identified. This review briefly describes the current knowledge regarding the genetics of PCD and focuses on the methodologies used to identify novel PCD-causing genes, including a candidate gene approach using model organisms, next-generation massively parallel sequencing techniques, and the use of genetically isolated populations. In conclusion, we demonstrate the multipronged approach that is necessary to circumvent challenges due to genetic heterogeneity to uncover genetic causes of PCD.
References
-
- Zariwala M, Knowles M, Leigh MW. Primary ciliary dyskinesia. GeneReviews at GeneTests: Medical genetics information resource [database online]. 2007 (updated in 2009). Available at: http://www.genetests.org/
-
- Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol 2007;69:423–450 - PubMed
-
- Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, Robinson BV, Minnix SL, Olbrich H, Severin T, et al. Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007;115:2814–2821 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
- R01 HL094976/HL/NHLBI NIH HHS/United States
- 5 R01HL071798/HL/NHLBI NIH HHS/United States
- R13HL105073-01/HL/NHLBI NIH HHS/United States
- U54 HL096458/HL/NHLBI NIH HHS/United States
- R01 HL071798/HL/NHLBI NIH HHS/United States
- 5R01HL094976/HL/NHLBI NIH HHS/United States
- UL1 RR025747/RR/NCRR NIH HHS/United States
- R13 HL105073/HL/NHLBI NIH HHS/United States
- R01 HL08265/HL/NHLBI NIH HHS/United States
- RR00046/RR/NCRR NIH HHS/United States
- M01 RR000046/RR/NCRR NIH HHS/United States
- 5 U54 HL096458-06/HL/NHLBI NIH HHS/United States
- P01 HL034322/HL/NHLBI NIH HHS/United States
- UL1 RR025780/RR/NCRR NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases