Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas
- PMID: 21927024
- PMCID: PMC3243769
- DOI: 10.1038/onc.2011.405
Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas
Abstract
Tumors are thought to be sustained by a reservoir of self-renewing cells, termed tumor-initiating cells or cancer stem cells. Osteosarcomas are high-grade sarcomas derived from osteoblast progenitor cells and are the most common pediatric bone malignancy. In this report we show that the stem cell transcription factor Sox2 is highly expressed in human and murine osteosarcoma (mOS) cell lines as well as in the tumor samples. Osteosarcoma cells have increased ability to grow in suspension as osteospheres, that are greatly enriched in expression of Sox2 and the stem cell marker, Sca-1. Depletion of Sox2 by short-hairpin RNAs in independent mOS-derived cells drastically reduces their transformed properties in vitro and their ability to form tumors. Sox2-depleted osteosarcoma cells can no longer form osteospheres and differentiate into mature osteoblasts. Concomitantly, they exhibit decreased Sca-1 expression and upregulation of the Wnt signaling pathway. Thus, despite other mutations, these cells maintain a requirement for Sox2 for tumorigenicity. Our data indicate that Sox2 is required for osteosarcoma cell self renewal, and that Sox2 antagonizes the pro-differentiation Wnt pathway that can in turn reduce Sox2 expression. These studies define Sox2 as a survival factor and a novel biomarker of self renewal in osteosarcomas, and support a tumor suppressive role for the Wnt pathway in tumors of mesenchymal origin. Our findings could provide the basis for novel therapeutic strategies based on inhibiting Sox2 or enhancing Wnt signaling for the treatment of osteosarcomas.
Conflict of interest statement
Figures







References
-
- Adams JM, Kelly PN, Dakic A, Carotta S, Nutt SL, Strasser A. Role of “cancer stem cells” and cell survival in tumor development and maintenance. Cold Spring Harb Symp Quant Biol. 2008;73:451–459. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials