Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;84(2 Pt 2):026309.
doi: 10.1103/PhysRevE.84.026309. Epub 2011 Aug 9.

Statistical analysis of global wind dynamics in vigorous Rayleigh-Bénard convection

Affiliations

Statistical analysis of global wind dynamics in vigorous Rayleigh-Bénard convection

K Petschel et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug.

Abstract

Experimental and numerical studies of thermal convection have shown that sufficiently vigorous convective flows exhibit a large-scale thermal wind component sweeping along small-scale thermal boundary layer instabilities. A characteristic feature of these flows is an intermittent behavior in the form of irregular reversals in the orientation of the large-scale circulation. There have been several attempts toward a better understanding and description of the phenomenon of flow reversals, but so far most of these models are based on a statistical analysis of few-point measurements or on simplified theoretical assumptions. The analysis of long-term data sets (>5×10(5) turnover times τ(t)=d/u(rms)) obtained by numerical simulations of turbulent two-dimensional Rayleigh-Bénard convection allows us to get a more comprehensive view of the spatio-temporal flow behavior. By means of a global statistical analysis of the characteristic spatial modes of the flow we extract information about the stability of dominant large-scale modes as well as the reversal paths in state subspace. We examine probability density functions and drift vector fields of two-dimensional state subspaces spanned by different large-scale spatial modes. This also provides information about the coexistence of dominant modes.

PubMed Disclaimer