Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Nov;278(22):4230-42.
doi: 10.1111/j.1742-4658.2011.08359.x. Epub 2011 Oct 24.

Fumarase: a paradigm of dual targeting and dual localized functions

Affiliations
Free article
Review

Fumarase: a paradigm of dual targeting and dual localized functions

Ohad Yogev et al. FEBS J. 2011 Nov.
Free article

Abstract

The enzyme fumarase is a conserved protein in all organisms with regard to its sequence, structure and function. This enzyme participates in the tricarboxylic acid cycle in mitochondria which is essential for cellular respiration in eukaryotes. However, a common theme conserved from yeast to humans is the existence of a cytosolic form of fumarase; hence this protein is dual localized. We have coined identical (or nearly identical) proteins situated in different subcellular locations 'echoforms' or 'echoproteins'. Fumarase was the first example of a dual localized protein whose mechanism of distribution was found to be based on a single translation product. Consequently, fumarase has become a paradigm for three unique eukaryotic cellular phenomena related to protein dual localization: (a) distribution between mitochondria and the cytoplasm involves reverse translocation; (b) targeting to mitochondria involves translation coupled import; and (c) there are two echoforms possessing distinct functions in the respective subcellular compartments. Here we describe and discuss these fumarase related phenomena and in addition point out approaches for studying dual function of distributed proteins, in particular compartment-specific depletion. In the case of fumarase, the cytoplasmic function was only recently discovered; the enzyme was found to participate in the cellular response to DNA double strand breaks. Strikingly, upon DNA damage the protein is transported from the cytosol to the nucleus, where by virtue of its enzymatic activity it participates in the DNA damage response.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources