Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Mar 24;350(2):248-55.
doi: 10.1016/j.mce.2011.09.008. Epub 2011 Sep 10.

Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis

Affiliations
Review

Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis

Morag J Young et al. Mol Cell Endocrinol. .

Abstract

For 50 years aldosterone has been thought to act primarily on epithelia to regulate fluid and electrolyte homeostasis. Mineralocorticoid receptors (MR), however, are also expressed in nonepithelial tissues such as the heart and vascular smooth muscle. Recently pathophysiologic effects of nonepithelial MR activation by aldosterone have been demonstrated, in the context of inappropriate mineralocorticoid for salt status, including coronary vascular inflammation and cardiac fibrosis. Consistent with experimental studies, clinical trials (RALES, EPHESUS), have demonstrated a reduced mortality and morbidity when MR antagonists are included in the treatment of moderate-severe heart failure. The pathogenesis of MR-mediated cardiovascular disease is a complex, multifactorial process that involves loss of vascular reactivity, hypertension, inflammation of the vasculature and end organs (heart and kidney), oxidative stress and tissue fibrosis (cardiac and renal). This review will discuss the mechanisms by which MR, located in the various cell types that comprise the heart, plays a central role in the development of cardiomyocyte failure, tissue inflammation, remodelling and hypertension.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources