Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990;84(1):82-7.

A genetic model for the study of abnormal nerve-muscle interactions at the level of excitation-contraction coupling: the mutation muscular dysgenesis

Affiliations
  • PMID: 2193149
Review

A genetic model for the study of abnormal nerve-muscle interactions at the level of excitation-contraction coupling: the mutation muscular dysgenesis

M Pinçon-Raymond et al. J Physiol (Paris). 1990.

Abstract

Excitation-contraction in muscle fibers are coupled through a complex mechanism involving multiproteic components located at a specialized cellular site, the triadic junction. Triads in normal muscle fiber result from the apposition of sarcoplasmic reticulum citernae and T-tubule and possess strikingly organized ultrastructural elements, bridging both types of membranes, the "junctional feet". Muscular dysgenesis in the mouse is characterized by total muscle inactivity in the developing skeletal muscles due to excitation-contraction uncoupling. Triads have been found to be disorganized with no "junctional feet" and dihydropyridine (DHP) binding sites are decreased with no slow Ca2+ currents, suggesting a basic defect in the excitation-contraction coupling machinery itself. We may hypothesize that muscular dysgenesis results in a marked defect in a functional protein involved in the morphogenesis of the triad and/or directly involved in Ca2+ release for contraction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources