Structural colors: from plasmonic to carbon nanostructures
- PMID: 21932283
- DOI: 10.1002/smll.201101068
Structural colors: from plasmonic to carbon nanostructures
Abstract
In addition to colorant-based pigmentation, structure is a major contributor to a material's color. In nature, structural color is often caused by the interaction of light with dielectric structures whose dimensions are on the order of visible-light wavelengths. Different optical interactions including multilayer interference, light scattering, the photonic crystal effect, and combinations thereof give rise to selective transmission or reflection of particular light wavelengths, which leads to the generation of structural color. Recent developments in nanofabrication of plasmonic and carbon nanostructures have opened another efficient way to control light properties at the subwavelength scale, including visible-light wavelength selection, which can produce structural color. In this Concept, the most relevant and representative achievements demonstrated over the last several years are presented and analyzed. These plasmonic and carbon nanostructures are believed to offer great potential for high-resolution color displays and spectral filtering applications.
Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Multiscale patterning of plasmonic metamaterials.Nat Nanotechnol. 2007 Sep;2(9):549-54. doi: 10.1038/nnano.2007.252. Epub 2007 Aug 19. Nat Nanotechnol. 2007. PMID: 18654366
-
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.Acc Chem Res. 2008 Dec;41(12):1578-86. doi: 10.1021/ar7002804. Acc Chem Res. 2008. PMID: 18447366
-
Color generation via subwavelength plasmonic nanostructures.Nanoscale. 2015 Apr 21;7(15):6409-19. doi: 10.1039/c5nr00578g. Nanoscale. 2015. PMID: 25800353
-
Structural colors in nature: the role of regularity and irregularity in the structure.Chemphyschem. 2005 Aug 12;6(8):1442-59. doi: 10.1002/cphc.200500007. Chemphyschem. 2005. PMID: 16015669 Review.
-
Nanofabrication of plasmonic structures.Annu Rev Phys Chem. 2009;60:147-65. doi: 10.1146/annurev.physchem.040808.090352. Annu Rev Phys Chem. 2009. PMID: 18928404 Review.
Cited by
-
A tunable color filter using a hybrid metasurface composed of ZnO nanopillars and Ag nanoholes.Nanoscale Adv. 2022 Jul 26;4(17):3624-3633. doi: 10.1039/d2na00286h. eCollection 2022 Aug 23. Nanoscale Adv. 2022. PMID: 36134352 Free PMC article.
-
Aperture-Controlled Fabrication of All-Dielectric Structural Color Pixels.ACS Appl Mater Interfaces. 2023 Jul 12;15(27):33056-33064. doi: 10.1021/acsami.3c03353. Epub 2023 Jun 29. ACS Appl Mater Interfaces. 2023. PMID: 37385597 Free PMC article.
-
Structural Color Filters Enabled by a Dielectric Metasurface Incorporating Hydrogenated Amorphous Silicon Nanodisks.Sci Rep. 2017 May 31;7(1):2556. doi: 10.1038/s41598-017-02911-w. Sci Rep. 2017. PMID: 28566739 Free PMC article.
-
All-dielectric metasurface for high-performance structural color.Nat Commun. 2020 Apr 20;11(1):1864. doi: 10.1038/s41467-020-15773-0. Nat Commun. 2020. PMID: 32313078 Free PMC article.
-
Polarization-Controlled Broad Color Palette Based on an Ultrathin One-Dimensional Resonant Grating Structure.Sci Rep. 2017 Jan 9;7:40073. doi: 10.1038/srep40073. Sci Rep. 2017. PMID: 28067264 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources