Generating neuronal diversity in the Drosophila central nervous system
- PMID: 21932323
- DOI: 10.1002/dvdy.22739
Generating neuronal diversity in the Drosophila central nervous system
Abstract
Generating diverse neurons in the central nervous system involves three major steps. First, heterogeneous neural progenitors are specified by positional cues at early embryonic stages. Second, neural progenitors sequentially produce neurons or intermediate precursors that acquire different temporal identities based on their birth-order. Third, sister neurons produced during asymmetrical terminal mitoses are given distinct fates. Determining the molecular mechanisms underlying each of these three steps of cellular diversification will unravel brain development and evolution. Drosophila has a relatively simple and tractable CNS, and previous studies on Drosophila CNS development have greatly advanced our understanding of neuron fate specification. Here we review those studies and discuss how the lessons we have learned from fly teach us the process of neuronal diversification in general.
Copyright © 2011 Wiley Periodicals, Inc.
Similar articles
-
[Cell fate specification during lineage development in the Drosophila embryonic central nervous system].Tanpakushitsu Kakusan Koso. 2004 Feb;49(3 Suppl):228-33. Tanpakushitsu Kakusan Koso. 2004. PMID: 14976734 Review. Japanese. No abstract available.
-
A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster.Nat Cell Biol. 2005 Jan;7(1):56-62. doi: 10.1038/ncb1203. Epub 2004 Dec 5. Nat Cell Biol. 2005. PMID: 15580266
-
Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals.Nat Neurosci. 2002 Dec;5(12):1265-9. doi: 10.1038/nn1202-1265. Nat Neurosci. 2002. PMID: 12447381 Review.
-
Specification of temporal identity in the developing nervous system.Annu Rev Cell Dev Biol. 2004;20:619-47. doi: 10.1146/annurev.cellbio.19.111301.115142. Annu Rev Cell Dev Biol. 2004. PMID: 15473854 Review.
-
Regulation of temporal identities during Drosophila neuroblast lineage development.Curr Opin Cell Biol. 2005 Dec;17(6):672-5. doi: 10.1016/j.ceb.2005.09.013. Epub 2005 Oct 21. Curr Opin Cell Biol. 2005. PMID: 16243502 Review.
Cited by
-
Genetic transformation of structural and functional circuitry rewires the Drosophila brain.Elife. 2014 Dec 29;3:e04407. doi: 10.7554/eLife.04407. Elife. 2014. PMID: 25546307 Free PMC article.
-
Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.Dev Neurobiol. 2016 Apr;76(4):434-51. doi: 10.1002/dneu.22325. Epub 2015 Jul 28. Dev Neurobiol. 2016. PMID: 26178322 Free PMC article.
-
The cis-regulatory dynamics of the Drosophila CNS determinant castor are controlled by multiple sub-pattern enhancers.Gene Expr Patterns. 2012 Aug-Sep;12(7-8):261-72. doi: 10.1016/j.gep.2012.05.004. Epub 2012 Jun 9. Gene Expr Patterns. 2012. PMID: 22691242 Free PMC article.
-
A hierarchical transcription factor cascade regulates enteroendocrine cell diversity and plasticity in Drosophila.Nat Commun. 2022 Oct 31;13(1):6525. doi: 10.1038/s41467-022-34270-0. Nat Commun. 2022. PMID: 36316343 Free PMC article.
-
Making Drosophila lineage-restricted drivers via patterned recombination in neuroblasts.Nat Neurosci. 2014 Apr;17(4):631-7. doi: 10.1038/nn.3654. Epub 2014 Feb 23. Nat Neurosci. 2014. PMID: 24561995