Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;15(5):R219.
doi: 10.1186/cc10455. Epub 2011 Sep 20.

Effect of fluid loading during hypovolaemic shock on caspofungin pharmacokinetic parameters in pig

Affiliations

Effect of fluid loading during hypovolaemic shock on caspofungin pharmacokinetic parameters in pig

Antoine Roch et al. Crit Care. 2011.

Abstract

Introduction: Caspofungin treatment is frequently initiated in shock patients. In the present study, we investigated the influence of hypovolaemic shock requiring fluid loading on the plasma and pulmonary pharmacokinetic parameters of caspofungin in the pig.

Methods: After being anaesthetised and mechanically ventilated, 12 pigs were bled to induce a two-hour deep shock and resuscitated using normal saline based on haemodynamic goals. A one-hour infusion of 70 mg of caspofungin was started at the beginning of the resuscitation period. The lungs were removed four hours after caspofungin administration. Sixteen animals served as controls without haemorrhage. Caspofungin concentrations were measured by using high-performance liquid chromatography, and a two-compartment population pharmacokinetic analysis was performed.

Results: In the shock group, the volume of blood removed was 39 ± 7 mL/kg and a volume of 90 ± 17 mL/kg saline was infused throughout the resuscitation period. The extravascular lung water index was higher in the shock group (9.3 ± 1.6 mL/kg vs 5.7 ± 1 mL/kg in the control group; P < 0.01). In the shock group, the median (interquartile range) maximal plasma concentration was 37% lower than in the control group (21.6 μg/mL (20.7 to 22.3) vs 33.1 μg/mL (28.1 to 38.3); P < 0.01). The median area under curve (AUC) from zero to four hours was 25% lower in the shock group than in the control group (60.3 hours × μg/mL (58.4 to 66.4) vs 80.8 hours × μg/mL (78.3 to 96.9); P < 0.01), as was the median lung caspofungin concentration (1.22 μg/g (0.89 to 1.46) vs 1.64 μg/g (1.22 to 2.01); P < 0.01). However, the plasma-to-tissue ratios were not different between the groups, indicating that lung diffusion of caspofungin was not affected after shock followed by fluid loading. Pharmacokinetic analysis showed that the peripheral volume of distribution of caspofungin and intercompartmental clearance were significantly higher in the shock group, as was the total apparent volume of distribution.

Conclusions: Hypovolaemic shock followed by fluid loading in the pig results in a significant increase in the apparent volume of distribution of caspofungin and in a decrease in its plasma and pulmonary exposition. Although our model was associated with capillary leakage and pulmonary oedema, our results should be generalised to the septic shock with caution. Future investigations should focus on monitoring plasma caspofungin concentrations and optimal caspofungin dosing in shock patients.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study protocol in the shock group.
Figure 2
Figure 2
Time evolution of cumulative fluid loading in the shock group. The results are expressed as means ± standard deviation (SD).
Figure 3
Figure 3
Mean arterial pressure in the control group (squares) and shock group (circles) at baseline and after 30 minutes and 120 minutes of bleeding, as well as after 15, 30, 60, 90 and 120 minutes of resuscitation and after 3 and 4 hours of resuscitation. The results are expressed as means ± standard deviation (SD). *P < 0.001 between groups (Tukey's test).
Figure 4
Figure 4
Caspofungin concentration time profile in the shock group (white plots) and in the control group (grey plots). Each plot represents the median and 25th and 75th percentile values. Bars represent the 5th and 95th percentiles. *P < 0.01 vs control group.

References

    1. Leroy O, Gangneux JP, Montravers P, Mira JP, Gouin F, Sollet JP, Carlet J, Reynes J, Rosenheim M, Regnier B, Lortholary O. AmarCand Study Group. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: a multicenter, prospective, observational study in France (2005-2006) Crit Care Med. 2009;37:1612–1618. doi: 10.1097/CCM.0b013e31819efac0. - DOI - PubMed
    1. Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C. Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis. 2006;6:21. doi: 10.1186/1471-2334-6-21. - DOI - PMC - PubMed
    1. Trof RJ, Beishuizen A, Debets-Ossenkopp YJ, Girbes AR, Groeneveld AB. Management of invasive pulmonary aspergillosis in non-neutropenic critically ill patients. Intensive Care Med. 2007;33:1694–1703. doi: 10.1007/s00134-007-0791-z. - DOI - PMC - PubMed
    1. Cook AM. Pharmacokinetic alterations of antimicrobials in the critically ill. J Pharm Pract. 2005;18:75–83. doi: 10.1177/0897190004273568. - DOI
    1. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44:1009–1034. doi: 10.2165/00003088-200544100-00002. - DOI - PubMed

Publication types