Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov 17;115(45):12486-92.
doi: 10.1021/jp205985v. Epub 2011 Sep 26.

Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites

Affiliations

Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites

Sippakorn Wannakao et al. J Phys Chem A. .

Abstract

Carbonyl-ene reactions, which involve C-C bond formation, are essential in many chemical syntheses. The formaldehyde-propene reaction catalyzed by several of the group 11 metal cations, Cu(+), Ag(+), and Au(+) exchanged on the faujasite zeolite (metal-FAU) has been investigated by density functional theory at the M06-L/6-31G(d,p) level. The Au-FAU exhibits a higher activity than the others due to the high charge transfer between the Au and the reactant molecules, even though it is located at a negatively charged site of the zeolite. This site enables it to compensate for the charge of the Au(+) ion. The NBO analysis reveals that the 6s orbital of the Au atom plays an important role, inducing a charge on the probe molecules. Moreover, the effect of the zeolite framework makes the Au-FAU more active than the others by stabilizing the high charge induced transition structure. The activation energy of the reaction catalyzed by Au-FAU is 13.0 kcal/mol whereas that of Cu and Ag-FAU is found to be around 17 kcal/mol. The product desorption needs to be improved for Au-FAU; however, we suggest that catalysts with high charge transfer might provide a promising activity.

PubMed Disclaimer

Publication types

LinkOut - more resources