Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;15(5):R228.
doi: 10.1186/cc10468. Epub 2011 Sep 26.

Is Drotrecogin alfa (activated) for adults with severe sepsis, cost-effective in routine clinical practice?

Affiliations

Is Drotrecogin alfa (activated) for adults with severe sepsis, cost-effective in routine clinical practice?

M Zia Sadique et al. Crit Care. 2011.

Abstract

Introduction: Previous cost-effectiveness analyses (CEA) reported that Drotrecogin alfa (DrotAA) is cost-effective based on a Phase III clinical trial (PROWESS). There is little evidence on whether DrotAA is cost-effective in routine clinical practice. We assessed whether DrotAA is cost-effective in routine practice for adult patients with severe sepsis and multiple organ systems failing.

Methods: This CEA used data from a prospective cohort study that compared DrotAA versus no DrotAA (control) for severe sepsis patients with multiple organ systems failing admitted to critical care units in England, Wales, and Northern Ireland. The cohort study used case-mix and mortality data from a national audit, linked with a separate audit of DrotAA infusions. Re-admissions to critical care and corresponding mortality were recorded for four years. Patients receiving DrotAA (n = 1,076) were matched to controls (n = 1,650) with a propensity score (Pscore), and Genetic Matching (GenMatch). The CEA projected long-term survival to report lifetime incremental costs per quality-adjusted life year (QALY) overall, and for subgroups with two or three to five organ systems failing at baseline.

Results: The incremental costs per QALY for DrotAA were £30,000 overall, and £16,000 for the subgroups with three to five organ systems failing. For patients with two organ systems failing, DrotAA resulted in an average loss of one QALY at an incremental cost of £15,000. When the subgroup with two organ systems was restricted to patients receiving DrotAA within 24 hours, DrotAA led to a gain of 1.2 QALYs at a cost per QALY of £11,000. The results were robust to other assumptions including the approach taken to projecting long-term outcomes.

Conclusions: DrotAA is cost-effective in routine practice for severe sepsis patients with three to five organ systems failing. For patients with two organ systems failing, this study could not provide unequivocal evidence on the cost-effectiveness of DrotAA.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Cost-effectiveness acceptability curves. The curves show the probability that the intervention is cost-effective at different levels of willingness to pay for a quality-adjusted life year gain. DrotAA, Drotrecogin alfa (activated).
Figure 2
Figure 2
Cost-effectiveness acceptability curves for DrotAA within 24 hours of critical care admission. The curves show the probability that the intervention is cost-effective at different levels of willingness to pay for a quality-adjusted life year gain for the subsample who received Drotrecogin alfa (activated) (DrotAA) within 24 hours of admission to the critical care unit.

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002. - DOI - PubMed
    1. Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Regnier B. Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA. 1995;274:968–974. doi: 10.1001/jama.274.12.968. - DOI - PubMed
    1. Padkin A, Goldfrad C, Brady AR, Young D, Black N, Rowan K. Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in England, Wales, and Northern Ireland. Crit Care Med. 2003;31:2332–2338. doi: 10.1097/01.CCM.0000085141.75513.2B. - DOI - PubMed
    1. Lindenauer PK, Rothberg MB, Nathanson BH, Pekow PS, Steingrub JS. Activated protein C and hospital mortality in septic shock: a propensity-matched analysis. Crit Care Med. 2010;38:1101–1107. doi: 10.1097/CCM.0b013e3181d423b7. - DOI - PubMed
    1. Finfer S, Bellomo R, Lipman J, French C, Dobb G, Myburgh J. Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units. Intensive Care Med. 2004;30:589–596. doi: 10.1007/s00134-004-2157-0. - DOI - PubMed

MeSH terms