VEGFR-1 mediates endothelial differentiation and formation of blood vessels in a murine model of infantile hemangioma
- PMID: 21945324
- PMCID: PMC3204018
- DOI: 10.1016/j.ajpath.2011.07.040
VEGFR-1 mediates endothelial differentiation and formation of blood vessels in a murine model of infantile hemangioma
Abstract
Vascular endothelial growth factor receptor-1 (VEGFR-1) is a member of the VEGFR family, and binds to VEGF-A, VEGF-B, and placental growth factor. VEGFR-1 contributes to tumor growth and metastasis, but its role in the pathological formation of blood vessels is still poorly understood. Herein, we used infantile hemangioma (IH), the most common tumor of infancy, as a means to study VEGFR-1 activation in pathological vasculogenesis. IH arises from stem cells (HemSCs) that can form the three most prominent cell types in the tumor: endothelial cells, pericytes, and adipocytes. HemSCs can recapitulate the IH life cycle when injected in immuncompromised mice, and are targeted by corticosteroids, the traditional treatment for IH. We report here that VEGF-A or VEGF-B induces VEGFR-1-mediated ERK1/2 phosphorylation in HemSCs and promotes differentiation of HemSCs to endothelial cells. Studies of VEGFR-2 phosphorylation status and down-regulation of neuropilin-1 in the HemSCs demonstrate that VEGFR-2 and NRP1 are not needed for VEGF-A- or VEGF-B-induced ERK1/2 activation. U0216-mediated blockade of ERK1/2 phosphorylation or shRNA-mediated suppression of VEGFR-1 prevents HemSC-to-EC differentiation. Furthermore, the down-regulation of VEGFR-1 in the HemSCs results in decreased formation of blood vessels in vivo and reduced ERK1/2 activation. Thus, our study reveals a critical role for VEGFR-1 in the HemSC-to-EC differentiation that underpins pathological vasculogenesis in IH.
Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Figures






Similar articles
-
Altered ratios of pro- and anti-angiogenic VEGF-A variants and pericyte expression of DLL4 disrupt vascular maturation in infantile haemangioma.J Pathol. 2016 Jun;239(2):139-51. doi: 10.1002/path.4715. J Pathol. 2016. PMID: 26957058 Free PMC article.
-
KLF2 Orchestrates Pathological Progression of Infantile Hemangioma through Hemangioma Stem Cell Fate Decisions.J Invest Dermatol. 2024 Aug;144(8):1850-1864.e9. doi: 10.1016/j.jid.2024.01.029. Epub 2024 Feb 19. J Invest Dermatol. 2024. PMID: 38382868
-
Propranolol Targets Hemangioma Stem Cells via cAMP and Mitogen-Activated Protein Kinase Regulation.Stem Cells Transl Med. 2016 Jan;5(1):45-55. doi: 10.5966/sctm.2015-0076. Epub 2015 Nov 16. Stem Cells Transl Med. 2016. PMID: 26574555 Free PMC article.
-
Cell Fate Regulation During the Development of Infantile Hemangioma.J Invest Dermatol. 2025 Feb;145(2):266-279. doi: 10.1016/j.jid.2024.06.1275. Epub 2024 Jul 18. J Invest Dermatol. 2025. PMID: 39023471 Review.
-
Hemangioma Endothelial Cells and Hemangioma Stem Cells in Infantile Hemangioma.Ann Plast Surg. 2022 Feb 1;88(2):244-249. doi: 10.1097/SAP.0000000000002835. Ann Plast Surg. 2022. PMID: 35023872 Review.
Cited by
-
Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer.J Clin Invest. 2013 Aug;123(8):3190-200. doi: 10.1172/JCI70212. Epub 2013 Aug 1. J Clin Invest. 2013. PMID: 23908119 Free PMC article. Review.
-
Infantile hemangioma: the common and enigmatic vascular tumor.J Clin Invest. 2024 Apr 15;134(8):e172836. doi: 10.1172/JCI172836. J Clin Invest. 2024. PMID: 38618963 Free PMC article. Review.
-
A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization.iScience. 2021 Jan 29;24(2):102112. doi: 10.1016/j.isci.2021.102112. eCollection 2021 Feb 19. iScience. 2021. PMID: 33659877 Free PMC article.
-
Nano-gold micelles loaded Dox and Elacridar for reversing drug resistance of breast cancer.IET Nanobiotechnol. 2023 Apr;17(2):49-60. doi: 10.1049/nbt2.12102. Epub 2022 Nov 7. IET Nanobiotechnol. 2023. PMID: 36341719 Free PMC article.
-
Pathogenesis of infantile haemangioma.Br J Dermatol. 2013 Jul;169(1):12-9. doi: 10.1111/bjd.12435. Br J Dermatol. 2013. PMID: 23668474 Free PMC article. Review.
References
-
- Fong G.H., Rossant J., Gertsenstein M., Breitman M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:66–70. - PubMed
-
- Hiratsuka S., Maru Y., Okada A., Seiki M., Noda T., Shibuya M. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 2001;61:1207–1213. - PubMed
-
- Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., Port E.R., Ruggero D., Shmelkov S.V., Jensen K.K., Rafii S., Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–827. - PMC - PubMed
-
- Fischer C., Mazzone M., Jonckx B., Carmeliet P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer. 2008;8:942–956. - PubMed
-
- Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C., Declercq C., Pawling J., Moons L., Collen D., Risau W., Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380:435–439. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Miscellaneous