Different signaling pathways stimulate a disintegrin and metalloprotease-17 (ADAM17) in neutrophils during apoptosis and activation
- PMID: 21949123
- PMCID: PMC3234723
- DOI: 10.1074/jbc.M111.277087
Different signaling pathways stimulate a disintegrin and metalloprotease-17 (ADAM17) in neutrophils during apoptosis and activation
Abstract
ADAM17 is a membrane-associated metalloprotease that cleaves proteins from the surface of neutrophils and modulates the density of various receptors and adhesion molecules. The protease activity of ADAM17 is highly inducible and occurs upon neutrophil activation as well as apoptosis. At this time, little is known about the signal transduction pathway that promotes ADAM17 activity in neutrophils upon the induction of apoptosis. We show that caspase-8 activation, Bid cleavage, and the release of mitochondrial reactive oxygen species are sequential transduction components of the Fas signaling cascade that induces ADAM17. This is different from ADAM17 stimulation upon overt neutrophil activation, which requires MAPK p38 or ERK, but not caspases and reactive oxygen species. ADAM17 activity in apoptotic neutrophils may serve to inactivate select effector molecules that promote the pro-inflammatory activity of recruited neutrophils. For instance, TNFα receptors TNF-RI and TNF-RII are substrates of ADAM17, and we show that they are shed during apoptosis, decreasing neutrophil sensitivity to TNFα. Altogether, our findings provide significant new insights into the signal transduction pathway that stimulates ADAM17 during induced neutrophil apoptosis. ADAM17 induction during apoptosis may rapidly diminish neutrophil sensitivity to the inflammatory environment, complementing other anti-inflammatory activities by these cells during inflammation resolution.
Figures







Similar articles
-
ADAM17 activity during human neutrophil activation and apoptosis.Eur J Immunol. 2006 Apr;36(4):968-76. doi: 10.1002/eji.200535257. Eur J Immunol. 2006. PMID: 16541467
-
ADAM17 activity and other mechanisms of soluble L-selectin production during death receptor-induced leukocyte apoptosis.J Immunol. 2010 Apr 15;184(8):4447-54. doi: 10.4049/jimmunol.0902925. Epub 2010 Mar 10. J Immunol. 2010. PMID: 20220092 Free PMC article.
-
Suppression of ADAM17-mediated Lyn/Akt pathways induces apoptosis of human leukemia U937 cells: Bungarus multicinctus protease inhibitor-like protein-1 uncovers the cytotoxic mechanism.J Biol Chem. 2010 Oct 1;285(40):30506-15. doi: 10.1074/jbc.M110.156257. Epub 2010 Aug 2. J Biol Chem. 2010. PMID: 20679348 Free PMC article.
-
The role of ADAM17 during liver damage.Biol Chem. 2021 Jun 30;402(9):1115-1128. doi: 10.1515/hsz-2021-0149. Print 2021 Aug 26. Biol Chem. 2021. PMID: 34192832 Review.
-
ADAM17, A Key Player of Cardiac Inflammation and Fibrosis in Heart Failure Development During Chronic Catecholamine Stress.Front Cell Dev Biol. 2021 Dec 13;9:732952. doi: 10.3389/fcell.2021.732952. eCollection 2021. Front Cell Dev Biol. 2021. PMID: 34966735 Free PMC article. Review.
Cited by
-
Resolution of inflammation pathways in preeclampsia-a narrative review.Immunol Res. 2017 Aug;65(4):774-789. doi: 10.1007/s12026-017-8921-3. Immunol Res. 2017. PMID: 28391374 Review.
-
Increased Potency of a Bi-specific TL1A-ADAM17 (TACE) Inhibitor by Cell Surface Targeting.Front Mol Biosci. 2017 Aug 22;4:61. doi: 10.3389/fmolb.2017.00061. eCollection 2017. Front Mol Biosci. 2017. PMID: 28879185 Free PMC article.
-
Modulation of CD163 expression by metalloprotease ADAM17 regulates porcine reproductive and respiratory syndrome virus entry.J Virol. 2014 Sep;88(18):10448-58. doi: 10.1128/JVI.01117-14. Epub 2014 Jun 25. J Virol. 2014. PMID: 24965453 Free PMC article.
-
Inhibiting ADAM17 enhances the efficacy of olaparib in ovarian cancer spheroids.Sci Rep. 2024 Nov 6;14(1):26926. doi: 10.1038/s41598-024-78442-y. Sci Rep. 2024. PMID: 39506058 Free PMC article.
-
ADAM17 cleaves CD16b (FcγRIIIb) in human neutrophils.Biochim Biophys Acta. 2013 Mar;1833(3):680-5. doi: 10.1016/j.bbamcr.2012.11.027. Epub 2012 Dec 8. Biochim Biophys Acta. 2013. PMID: 23228566 Free PMC article.
References
-
- Reiss K., Saftig P. (2009) Semin. Cell Dev. Biol. 20, 126–137 - PubMed
-
- Black R. A., Rauch C. T., Kozlosky C. J., Peschon J. J., Slack J. L., Wolfson M. F., Castner B. J., Stocking K. L., Reddy P., Srinivasan S., Nelson N., Boiani N., Schooley K. A., Gerhart M., Davis R., Fitzner J. N., Johnson R. S., Paxton R. J., March C. J., Cerretti D. P. (1997) Nature 385, 729–733 - PubMed
-
- Moss M. L., Jin S. L., Milla M. E., Bickett D. M., Burkhart W., Carter H. L., Chen W. J., Clay W. C., Didsbury J. R., Hassler D., Hoffman C. R., Kost T. A., Lambert M. H., Leesnitzer M. A., McCauley P., McGeehan G., Mitchell J., Moyer M., Pahel G., Rocque W., Overton L. K., Schoenen F., Seaton T., Su J. L., Becherer J. D. (1997) Nature 385, 733–736 - PubMed
-
- Arribas J., Esselens C. (2009) Curr. Pharm. Des. 15, 2319–2335 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous