Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;16(9):096002.
doi: 10.1117/1.3615667.

Optical coherence tomography to investigate optical properties of blood during coagulation

Affiliations
Free article

Optical coherence tomography to investigate optical properties of blood during coagulation

Xiangqun Xu et al. J Biomed Opt. 2011 Sep.
Free article

Abstract

This study investigates the optical properties of human blood during the coagulation process under statics using optical coherence tomography (OCT). OCT signal slope (OCTSS) and 1∕e light penetration depth (d(1∕e)) were obtained from the profiles of reflectance versus depth. Results showed that both OCTSS and d(1∕e) were able to sensitively differentiate various stages of blood properties during coagulating. After 1 h clotting, OCTSS decreased by 47.0%, 15.0%, 13.7%, and 8.5% and d(1∕e) increased by 34.7%, 29.4%, 24.3%, and 22.9% for the blood samples at HCT of 25%, 35%, 45%, and 55%, respectively. The slope of d(1∕e) versus time (S(r), ×10(-4) mm∕s), associated with clot formation rate decreased from 6.0 ± 0.3, 3.7 ± 0.5 to 2.3 ± 0.4 with the increasing of HCT from 35%, 45%, to 55%. The clotting time (t(c)) from the d(1∕e) evolution curves was estimated to be 1969 ± 92 s, 375 ± 12 s, 455 ± 11 s, and 865 ± 47 s for the blood of 25%, 35%, 45%, and 55%. This study demonstrates that the parameters (t(c) and S(r)) from the variations in d(1∕e) had better sensitivity and smaller standard deviation. Furthermore, blood hematocrit affecting backscattering properties of blood during coagulation was capable of being discerned by OCT parameters. It is concluded that OCT is a potential technique to quantify and follow the liquid-gel transition of blood during clotting.

PubMed Disclaimer

Similar articles

Cited by

Publication types