Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;52(5):545-56.
doi: 10.1269/jrr.11056.

How can we overcome tumor hypoxia in radiation therapy?

Affiliations
Free article
Review

How can we overcome tumor hypoxia in radiation therapy?

Hiroshi Harada. J Radiat Res. 2011.
Free article

Abstract

Local recurrence and distant metastasis frequently occur after radiation therapy for cancer and can be fatal. Evidence obtained from radiochemical and radiobiological studies has revealed these problems to be caused, at least in part, by a tumor-specific microenvironment, hypoxia. Moreover, a transcription factor, hypoxia-inducible factor 1 (HIF-1), was identified as pivotal to hypoxia-mediated radioresistance. To overcome the problems, radiation oncologists have recently obtained powerful tools, such as "simultaneous integrated boost intensity-modulated radiation therapy (SIB-IMRT), which enables a booster dose of radiation to be delivered to small target fractions in a malignant tumor", "hypoxia-selective cytotoxins/drugs", and "HIF-1 inhibitors" etc. In order to fully exploit these innovative and interdisciplinary strategies in cancer therapy, it is critical to unveil the characteristics, intratumoral localization, and dynamics of hypoxia/HIF-1-active tumor cells during tumor growth and after radiation therapy. We have performed optical imaging experiments using tumor-bearing mice and revealed that the locations of HIF-1-active tumor cells changes dramatically as tumors grow. Moreover, HIF-1 activity changes markedly after radiation therapy. This review overviews 1) fundamental problems surrounding tumor hypoxia in current radiation therapy, 2) the function of HIF-1 in tumor radioresistance, 3) the dynamics of hypoxic tumor cells during tumor growth and after radiation therapy, and 4) how we should overcome the difficulties with radiation therapy using innovative interdisciplinary technologies.

PubMed Disclaimer

Publication types

Substances