Long-range massively parallel mate pair sequencing detects distinct mutations and similar patterns of structural mutability in two breast cancer cell lines
- PMID: 21962895
- PMCID: PMC3185296
- DOI: 10.1016/j.cancergen.2011.07.009
Long-range massively parallel mate pair sequencing detects distinct mutations and similar patterns of structural mutability in two breast cancer cell lines
Erratum in
- Cancer Genet. 2011 Dec;204(12):694. Coarfa, Cristian [added];Schoenherr, Caroline [added]
Abstract
Cancer genomes frequently undergo genomic instability resulting in accumulation of chromosomal rearrangement. To date, one of the main challenges has been to confidently and accurately identify these rearrangements by using short-read massively parallel sequencing. We were able to improve cancer rearrangement detection by combining two distinct massively parallel sequencing strategies: fosmid-sized (36 kb on average) and standard 5 kb mate pair libraries. We applied this combined strategy to map rearrangements in two breast cancer cell lines, MCF7 and HCC1954. We detected and validated a total of 91 somatic rearrangements in MCF7 and 25 in HCC1954, including genomic alterations corresponding to previously reported transcript aberrations in these two cell lines. Each of the genomes contains two types of breakpoints: clustered and dispersed. In both cell lines, the dispersed breakpoints show enrichment for low copy repeats, while the clustered breakpoints associate with high copy number amplifications. Comparing the two genomes, we observed highly similar structural mutational spectra affecting different sets of genes, pointing to similar histories of genomic instability against the background of very different gene network perturbations.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures


Similar articles
-
A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome.Genome Res. 2009 Feb;19(2):167-77. doi: 10.1101/gr.080259.108. Epub 2008 Dec 3. Genome Res. 2009. PMID: 19056696 Free PMC article.
-
SVAtools for junction detection of genome-wide chromosomal rearrangements by mate-pair sequencing (MPseq).Cancer Genet. 2018 Feb;221:1-18. doi: 10.1016/j.cancergen.2017.11.009. Epub 2017 Dec 2. Cancer Genet. 2018. PMID: 29405991
-
Remarkable similarities of chromosomal rearrangements between primary human breast cancers and matched distant metastases as revealed by whole-genome sequencing.Oncotarget. 2015 Nov 10;6(35):37169-84. doi: 10.18632/oncotarget.5951. Oncotarget. 2015. PMID: 26439695 Free PMC article.
-
Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics.Heredity (Edinb). 2012 Jan;108(1):75-85. doi: 10.1038/hdy.2011.100. Epub 2011 Nov 16. Heredity (Edinb). 2012. PMID: 22086080 Free PMC article. Review.
-
Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements.DNA Repair (Amst). 2021 Nov;107:103207. doi: 10.1016/j.dnarep.2021.103207. Epub 2021 Aug 10. DNA Repair (Amst). 2021. PMID: 34425515 Review.
Cited by
-
Discovery of recurrent structural variants in nasopharyngeal carcinoma.Genome Res. 2014 Feb;24(2):300-9. doi: 10.1101/gr.156224.113. Epub 2013 Nov 8. Genome Res. 2014. PMID: 24214394 Free PMC article.
-
Integrative detection and analysis of structural variation in cancer genomes.Nat Genet. 2018 Oct;50(10):1388-1398. doi: 10.1038/s41588-018-0195-8. Epub 2018 Sep 10. Nat Genet. 2018. PMID: 30202056 Free PMC article.
-
High-throughput long paired-end sequencing of a Fosmid library by PacBio.Plant Methods. 2019 Nov 26;15:142. doi: 10.1186/s13007-019-0525-6. eCollection 2019. Plant Methods. 2019. PMID: 31788019 Free PMC article.
-
Amplification and thrifty single-molecule sequencing of recurrent somatic structural variations.Genome Res. 2014 Feb;24(2):318-28. doi: 10.1101/gr.161497.113. Epub 2013 Dec 4. Genome Res. 2014. PMID: 24307551 Free PMC article.
-
Proteomic Analysis of HCC-1954 and MCF-7 Cell Lines Highlights Crosstalk between αv and β1 Integrins, E-Cadherin and HER-2.Int J Mol Sci. 2022 Sep 5;23(17):10194. doi: 10.3390/ijms231710194. Int J Mol Sci. 2022. PMID: 36077593 Free PMC article.
References
-
- Bignell GR, Santarius T, Pole JC, Butler AP, Perry J, Pleasance E, Greenman C, Menzies A, Taylor S, Edkins S, Campbell P, Quail M, Plumb B, Matthews L, McLay K, Edwards PA, Rogers J, Wooster R, Futreal PA, Stratton MR. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res. 2007;17:1296–303. - PMC - PubMed
-
- Kidd JM, Cooper GM, Donahue WF, Hayden HS, Sampas N, Graves T, Hansen N, Teague B, Alkan C, Antonacci F, Haugen E, Zerr T, Yamada NA, Tsang P, Newman TL, Tuzun E, Cheng Z, Ebling HM, Tusneem N, David R, Gillett W, Phelps KA, Weaver M, Saranga D, Brand A, Tao W, Gustafson E, McKernan K, Chen L, Malig M, Smith JD, Korn JM, McCarroll SA, Altshuler DA, Peiffer DA, Dorschner M, Stamatoyannopoulos J, Schwartz D, Nickerson DA, Mullikin JC, Wilson RK, Bruhn L, Olson MV, Kaul R, Smith DR, Eichler EE. Mapping and sequencing of structural variation from eight human genomes. Nature. 2008;453:56–64. - PMC - PubMed
-
- Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, Haugen E, Hayden H, Albertson D, Pinkel D, Olson MV, Eichler EE. Fine-scale structural variation of the human genome. Nat Genet. 2005;37:727–32. - PubMed
-
- Volik S, Raphael BJ, Huang G, Stratton MR, Bignel G, Murnane J, Brebner JH, Bajsarowicz K, Paris PL, Tao Q, Kowbel D, Lapuk A, Shagin DA, Shagina IA, Gray JW, Cheng JF, de Jong PJ, Pevzner P, Collins C. Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Res. 2006 - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical