Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 3:11:37.
doi: 10.1186/1472-6807-11-37.

Structural studies of the PARP-1 BRCT domain

Affiliations

Structural studies of the PARP-1 BRCT domain

Paul A Loeffler et al. BMC Struct Biol. .

Abstract

Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is one of the first proteins localized to foci of DNA damage. Upon activation by encountering nicked DNA, the PARP-1 mediated trans-poly(ADP-ribosyl)ation of DNA binding proteins occurs, facilitating access and accumulation of DNA repair factors. PARP-1 also auto-(ADP-ribosyl)ates its central BRCT-containing domain forming part of an interaction site for the DNA repair scaffolding protein X-ray cross complementing group 1 protein (XRCC1). The co-localization of XRCC1, as well as bound DNA repair factors, to sites of DNA damage is important for cell survival and genomic integrity.

Results: Here we present the solution structure and biophysical characterization of the BRCT domain of rat PARP-1. The PARP-1 BRCT domain has the globular α/β fold characteristic of BRCT domains and has a thermal melting transition of 43.0°C. In contrast to a previous characterization of this domain, we demonstrate that it is monomeric in solution using both gel-filtration chromatography and small-angle X-ray scattering. Additionally, we report that the first BRCT domain of XRCC1 does not interact significantly with the PARP-1 BRCT domain in the absence of ADP-ribosylation. Moreover, none of the interactions with other longer PARP-1 constructs which previously had been demonstrated in a pull-down assay of mammalian cell extracts were detected.

Conclusions: The PARP-1 BRCT domain has the conserved BRCT fold that is known to be an important protein:protein interaction module in DNA repair and cell signalling pathways. Data indicating no significant protein:protein interactions between PARP-1 and XRCC1 likely results from the absence of poly(ADP-ribose) in one or both binding partners, and further implicates a poly(ADP-ribose)-dependent mechanism for localization of XRCC1 to sites of DNA damage.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Characterization of PARP-1 Constructs. (a) Schematic of PARP-1 indicating the domain structure and constructs used in these experiments. Domain D corresponds to the PARP1 BRCT domain. Functional domains are indicated: ZF1, first zinc finger domain; ZF2, second zinc finger domain; ZF3, third zinc finger domain; WGR, WGR domain. Domains previously demonstrated to interact with XRCC1 are identified with a red asterisk. Molecular masses of constructs, including purification tags are indicated. (b) Schematic of XRCC1 domain structure and constructs used in these experiments. Domain previously identified to interact with PARP-1 is marked with a red asterisk. Molecular masses of constructs, including purification tags are indicated. (c) Gel-filtration chromatogram of domain constructs of XRCC1 and PARP-1. Plots are colored as in (a) (green, blue, red, or light purple) and (b) (black or gray). (d) Gel-filtration chromatogram of mixtures of X1BRCTa and the various PARP-1 domain constructs from panel (a). Chromatograms of the potential complexes are colored based on the scheme of the PARP-1 constructs identified in panel (a). Note that each of the curves in this panel exhibits two maxima that approximately correspond to the maximum positions in panel c and the maximum of the X1BRCTa in panel c (black curve). Molecular mass standards used are represented as colored circles (conalbumin (76.6 kDa), pink; ovalbumin (44.3 kDa), brown; carbonic anhydrase (29.0 kDa), orange; cytochrome C (14.3 kDa), gold) in panels (c) and (d).
Figure 2
Figure 2
Thermal melting of the PARP-1 BRCT domain. Solid line is a fit of the circular dichroism signal to a two-state unfolding model.
Figure 3
Figure 3
Small-angle X-ray scattering of the PARP-1 BRCT domain. (a) SAXS intensity data inset with the probability distribution function. (b) Ab initio molecular envelope (light blue surface representation) of the PARP-1 BRCT domain, generated from SAXS intensity data, superimposed with the NMR solution structure (ribbon representation).
Figure 4
Figure 4
NMR solution structure of the PARP-1 BRCT domain. (a) 1H-15N HSQC spectra of the PARP-1 BRCT domain (assigned resonances indicated). Resonances corresponding to side-chain Asn and Gln residues are not labelled. (b) Ribbon diagram of the ten lowest energy structures in the NMR-generated ensemble of the PARP-1 BRCT domain. (c) Ribbon representation of the PARP-1 BRCT domain with labelled secondary structure elements. (d) Electrostatic surface representation of the PARP-1 BRCT domain (blue, positive; red, negative; white, neutral).
Figure 5
Figure 5
Comparison of BRCT domains. (a) CLUSTAL-W alignment of the PARP-1 BRCT domain (PARP), the second BRCT domain of XRCC1 (X1BRCTb), and the first BRCA1 BRCT domain (BRCA1). Residues contributing to the BRCA1 phospho-serine binding site are underlined and in red font; dual repeat interacting residues in the tandem BRCA1 BRCT domains are underlined and in green font, and XRCC1 homodimer interface residues are underlined and in cyan font (adapted from [31]). (b) Stereo view of a superposition of the structure of the sixth BRCT domain of TopBP1 (magenta) and PARP-1 BRCT (cyan). (c) Close-up stereo view of the superposition of the BRCA1 BRCT domain phosphoserine binding site (magenta) and the homologous region from the PARP-1 BRCT domain (cyan). Residues interacting with the phosphoserine (orange) in the BRCA1 BRCT domain (magenta), as well as structurally homologous residues from the PARP-1 BRCT domain (cyan) are shown in stick representation.

References

    1. El-Khamisy SF, Masutani M, Suzuki H, Caldecott KW. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003;31(19):5526–5533. doi: 10.1093/nar/gkg761. - DOI - PMC - PubMed
    1. Pion E, Ullmann GM, Ame JC, Gerard D, de Murcia G, Bombarda E. DNA-induced dimerization of poly(ADP-ribose) polymerase-1 triggers its activation. Biochemistry. 2005;44(44):14670–14681. doi: 10.1021/bi050755o. - DOI - PubMed
    1. Huang JY, Chen WH, Chang YL, Wang HT, Chuang WT, Lee SC. Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation. Nucleic Acids Res. 2006;34(8):2398–2407. doi: 10.1093/nar/gkl241. - DOI - PMC - PubMed
    1. D'Amours D, Desnoyers S, D'Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999;342(Pt 2):249–268. - PMC - PubMed
    1. Bhatia M, Kirkland JB, Meckling-Gill KA. Overexpression of poly(ADP-ribose) polymerase promotes cell cycle arrest and inhibits neutrophilic differentiation of NB4 acute promyelocytic leukemia cells. Cell Growth Differ. 1996;7(1):91–100. - PubMed

Publication types

MeSH terms

Substances

Associated data

LinkOut - more resources