Pretargeted radioimmunotherapy using genetically engineered antibody-streptavidin fusion proteins for treatment of non-hodgkin lymphoma
- PMID: 21976541
- PMCID: PMC3229652
- DOI: 10.1158/1078-0432.CCR-11-1204
Pretargeted radioimmunotherapy using genetically engineered antibody-streptavidin fusion proteins for treatment of non-hodgkin lymphoma
Abstract
Purpose: Pretargeted radioimmunotherapy (PRIT) using streptavidin (SAv)-biotin technology can deliver higher therapeutic doses of radioactivity to tumors than conventional RIT. However, "endogenous" biotin can interfere with the effectiveness of this approach by blocking binding of radiolabeled biotin to SAv. We engineered a series of SAv FPs that downmodulate the affinity of SAv for biotin, while retaining high avidity for divalent DOTA-bis-biotin to circumvent this problem.
Experimental design: The single-chain variable region gene of the murine 1F5 anti-CD20 antibody was fused to the wild-type (WT) SAv gene and to mutant SAv genes, Y43A-SAv and S45A-SAv. FPs were expressed, purified, and compared in studies using athymic mice bearing Ramos lymphoma xenografts.
Results: Biodistribution studies showed delivery of more radioactivity to tumors of mice pretargeted with mutant SAv FPs followed by (111)In-DOTA-bis-biotin [6.2 ± 1.7% of the injected dose per gram (%ID/gm) of tumor 24 hours after Y43A-SAv FP and 5.6 ± 2.2%ID/g with S45A-SAv FP] than in mice on normal diets pretargeted with WT-SAv FP (2.5 ± 1.6%ID/g; P = 0.01). These superior biodistributions translated into superior antitumor efficacy in mice treated with mutant FPs and (90)Y-DOTA-bis-biotin [tumor volumes after 11 days: 237 ± 66 mm(3) with Y43A-SAv, 543 ± 320 mm(3) with S45A-SAv, 1129 ± 322 mm(3) with WT-SAv, and 1435 ± 212 mm(3) with control FP (P < 0.0001)].
Conclusions: Genetically engineered mutant-SAv FPs and bis-biotin reagents provide an attractive alternative to current SAv-biotin PRIT methods in settings where endogenous biotin levels are high.
©2011 AACR.
Figures






Similar articles
-
Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: a preclinical model toward optimal consolidation therapy to eradicate minimal residual disease.Blood. 2010 Nov 18;116(20):4231-9. doi: 10.1182/blood-2010-05-282327. Epub 2010 Aug 11. Blood. 2010. PMID: 20702781 Free PMC article.
-
Design and synthesis of bis-biotin-containing reagents for applications utilizing monoclonal antibody-based pretargeting systems with streptavidin mutants.Bioconjug Chem. 2010 Jul 21;21(7):1225-38. doi: 10.1021/bc100030q. Bioconjug Chem. 2010. PMID: 20597486 Free PMC article.
-
Comparison of a tetravalent single-chain antibody-streptavidin fusion protein and an antibody-streptavidin chemical conjugate for pretargeted anti-CD20 radioimmunotherapy of B-cell lymphomas.Blood. 2006 Jul 1;108(1):328-36. doi: 10.1182/blood-2005-11-4327. Epub 2006 Mar 23. Blood. 2006. PMID: 16556891 Free PMC article.
-
Pretargeted radioimmunotherapy.Int J Radiat Oncol Biol Phys. 2006;66(2 Suppl):S57-9. doi: 10.1016/j.ijrobp.2006.04.058. Int J Radiat Oncol Biol Phys. 2006. PMID: 16979441 Review.
-
Pretargeted radioimmunotherapy of cancer: progress step by step.J Nucl Med. 2003 Mar;44(3):400-11. J Nucl Med. 2003. PMID: 12621007 Review.
Cited by
-
Two-Step Delivery: Exploiting the Partition Coefficient Concept to Increase Intratumoral Paclitaxel Concentrations In vivo Using Responsive Nanoparticles.Sci Rep. 2016 Jan 7;6:18720. doi: 10.1038/srep18720. Sci Rep. 2016. PMID: 26740245 Free PMC article.
-
Comparative Analysis of Bispecific Antibody and Streptavidin-Targeted Radioimmunotherapy for B-cell Cancers.Cancer Res. 2016 Nov 15;76(22):6669-6679. doi: 10.1158/0008-5472.CAN-16-0571. Epub 2016 Sep 2. Cancer Res. 2016. PMID: 27590740 Free PMC article.
-
Advances and application of radioimmunotherapy in non-Hodgkin lymphoma.Am J Blood Res. 2012;2(2):86-97. Epub 2012 Apr 22. Am J Blood Res. 2012. PMID: 22762027 Free PMC article.
-
Plug-and-play pairing via defined divalent streptavidins.J Mol Biol. 2014 Jan 9;426(1):199-214. doi: 10.1016/j.jmb.2013.09.016. Epub 2013 Sep 19. J Mol Biol. 2014. PMID: 24056174 Free PMC article.
-
ImmunoPET: Concept, Design, and Applications.Chem Rev. 2020 Apr 22;120(8):3787-3851. doi: 10.1021/acs.chemrev.9b00738. Epub 2020 Mar 23. Chem Rev. 2020. PMID: 32202104 Free PMC article. Review.
References
-
- Vose JM. Current approaches to the management of non-Hodgkin’s lymphoma. Semin Oncol. 1998 Aug;25(4):483–91. - PubMed
-
- Fisher RI, Gaynor ER, Dahlberg S, Oken MM, Grogan TM, Mize EM, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin’s lymphoma. N Engl J Med. 1993 Apr 8;328(14):1002–6. - PubMed
-
- Horning SJ. Treatment approaches to the low-grade lymphomas. Blood. 1994 Feb 15;83(4):881–4. - PubMed
-
- Kaminski MS, Zelenetz AD, Press OW, Saleh M, Leonard J, Fehrenbacher L, et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J Clin Oncol. 2001 Oct 1;19(19):3918–28. - PubMed
-
- Knox SJ, Goris ML, Trisler K, Negrin R, Davis T, Liles TM, et al. Yttrium-90-labeled anti-CD20 monoclonal antibody therapy of recurrent B-cell lymphoma. Clin Cancer Res. 1996 Mar 2;(3):457–70. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous