Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2012 May;23(5):1259-1266.
doi: 10.1093/annonc/mdr439. Epub 2011 Oct 6.

Minimising critical organ irradiation in limited stage Hodgkin lymphoma: a dosimetric study of the benefit of involved node radiotherapy

Affiliations
Free article
Randomized Controlled Trial

Minimising critical organ irradiation in limited stage Hodgkin lymphoma: a dosimetric study of the benefit of involved node radiotherapy

B A Campbell et al. Ann Oncol. 2012 May.
Free article

Abstract

Background: Chemotherapy plus radiotherapy is the standard of care for patients with limited stage Hodgkin lymphoma (HL). Radiotherapy is evolving from involved field radiotherapy (IFRT) to involved node radiotherapy (INRT) to decrease radiotherapy-related morbidity. In the absence of long-term toxicity data, dose-volume metrics of organs at risk (OAR) provide a surrogate measure of toxicity risk.

Patients and methods: Ten female patients with stage I-IIA supradiaphragmatic HL were randomly selected. All patients had pre-chemotherapy computerised tomography (CT) and CT-positron emission tomography staging. Using CT planning, three radiotherapy plans were produced per patient: (i) IFRT, (ii) INRT using parallel-opposed beams and (iii) INRT using volumetric modulated arc therapy (VMAT). Radiotherapy dose was 30.6 Gy in 1.8 Gy fractions. OAR evaluated were lungs, breasts, thyroid, heart and coronary arteries.

Results: Compared with IFRT, INRT significantly reduced mean doses to lungs (P < 0.01), breasts (P < 0.01), thyroid (P < 0.01) and heart (P < 0.01), on Wilcoxon testing. Compared with conventional INRT, VMAT improved dose conformality but increased low-dose radiation exposure to lungs and breasts. VMAT reduced the heart volume receiving 30 Gy (V30) by 85%.

Conclusions: Reduction from IFRT to INRT decreased the volumes of lungs, breasts and thyroid receiving high-dose radiation, suggesting the potential to reduce long-term second malignancy risks. VMAT may be useful for patients with pre-existing heart disease by minimising further cardiac toxicity risks.

PubMed Disclaimer

Publication types

MeSH terms