Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function
- PMID: 21982370
- PMCID: PMC3226708
- DOI: 10.1016/j.neuron.2011.08.022
Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function
Abstract
Autism spectrum disorders such as Rett syndrome (RTT) have been hypothesized to arise from defects in experience-dependent synapse maturation. RTT is caused by mutations in MECP2, a nuclear protein that becomes phosphorylated at S421 in response to neuronal activation. We show here that disruption of MeCP2 S421 phosphorylation in vivo results in defects in synapse development and behavior, implicating activity-dependent regulation of MeCP2 in brain development and RTT. We investigated the mechanism by which S421 phosphorylation regulates MeCP2 function and show by chromatin immunoprecipitation-sequencing that this modification occurs on MeCP2 bound across the genome. The phosphorylation of MeCP2 S421 appears not to regulate the expression of specific genes; rather, MeCP2 functions as a histone-like factor whose phosphorylation may facilitate a genome-wide response of chromatin to neuronal activity during nervous system development. We propose that RTT results in part from a loss of this experience-dependent chromatin remodeling.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures
Comment in
-
MeCP2: phosphorylated locally, acting globally.Neuron. 2011 Oct 6;72(1):3-5. doi: 10.1016/j.neuron.2011.09.017. Neuron. 2011. PMID: 21982363
References
Publication types
MeSH terms
Substances
Grants and funding
- K08MH90306/MH/NIMH NIH HHS/United States
- R00 NS058391/NS/NINDS NIH HHS/United States
- R01 DA022202/DA/NIDA NIH HHS/United States
- T32CA009361/CA/NCI NIH HHS/United States
- 1R01NS048276/NS/NINDS NIH HHS/United States
- 1R21NS070250-01A1/NS/NINDS NIH HHS/United States
- T32 GM007753/GM/NIGMS NIH HHS/United States
- K08 MH090306/MH/NIMH NIH HHS/United States
- K99 NS058391/NS/NINDS NIH HHS/United States
- DP2 OD006461/OD/NIH HHS/United States
- R21 NS070250/NS/NINDS NIH HHS/United States
- R01 NS048276/NS/NINDS NIH HHS/United States
- T32 CA009361/CA/NCI NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
