Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Oct;81(10):2877-86.
doi: 10.1016/j.ejrad.2011.09.011. Epub 2011 Oct 5.

Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans

Affiliations
Comparative Study

Pulmonary nodules: effect of adaptive statistical iterative reconstruction (ASIR) technique on performance of a computer-aided detection (CAD) system-comparison of performance between different-dose CT scans

Masahiro Yanagawa et al. Eur J Radiol. 2012 Oct.

Abstract

Purpose: To evaluate the effects of ASIR on CAD system of pulmonary nodules using clinical routine-dose CT and lower-dose CT.

Materials and methods: Thirty-five patients (body mass index, 22.17 ± 4.37 kg/m(2)) were scanned by multidetector-row CT with tube currents (clinical routine-dose CT, automatically adjusted mA; lower-dose CT, 10 mA) and X-ray voltage (120 kVp). Each 0.625-mm-thick image was reconstructed at 0%-, 50%-, and 100%-ASIR: 0%-ASIR is reconstructed using only the filtered back-projection algorithm (FBP), while 100%-ASIR is reconstructed using the maximum ASIR and 50%-ASIR implies a blending of 50% FBP and ASIR. CAD output was compared retrospectively with the results of the reference standard which was established using a consensus panel of three radiologists. Data were analyzed using Bonferroni/Dunn's method. Radiation dose was calculated by multiplying dose-length product by conversion coefficient of 0.021.

Results: The consensus panel found 265 non-calcified nodules ≤ 30 mm (ground-glass opacity [GGO], 103; part-solid, 34; and solid, 128). CAD sensitivity was significantly higher at 100%-ASIR [clinical routine-dose CT, 71% (overall), 49% (GGO); lower-dose CT, 52% (overall), 67% (solid)] than at 0%-ASIR [clinical routine-dose CT, 54% (overall), 25% (GGO); lower-dose CT, 36% (overall), 50% (solid)] (p<0.001). Mean number of false-positive findings per examination was significantly higher at 100%-ASIR (clinical routine-dose CT, 8.5; lower-dose CT, 6.2) than at 0%-ASIR (clinical routine-dose CT, 4.6; lower-dose CT, 3.5; p<0.001). Effective doses were 10.77 ± 3.41 mSv in clinical routine-dose CT and 2.67 ± 0.17 mSv in lower-dose CT.

Conclusion: CAD sensitivity at 100%-ASIR on lower-dose CT is almost equal to that at 0%-ASIR on clinical routine-dose CT. ASIR can increase CAD sensitivity despite increased false-positive findings.

PubMed Disclaimer

Publication types