Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct 12:12:501.
doi: 10.1186/1471-2164-12-501.

Temporal transcriptome changes induced by MDV in Marek's disease-resistant and -susceptible inbred chickens

Affiliations

Temporal transcriptome changes induced by MDV in Marek's disease-resistant and -susceptible inbred chickens

Ying Yu et al. BMC Genomics. .

Abstract

Background: Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV) and characterized by T cell lymphoma and infiltration of lymphoid cells into various organs such as liver, spleen, peripheral nerves and muscle. Resistance to MD and disease risk have long been thought to be influenced both by genetic and environmental factors, the combination of which contributes to the observed outcome in an individual. We hypothesize that after MDV infection, genes related to MD-resistance or -susceptibility may exhibit different trends in transcriptional activity in chicken lines having a varying degree of resistance to MD.

Results: In order to study the mechanisms of resistance and susceptibility to MD, we performed genome-wide temporal expression analysis in spleen tissues from MD-resistant line 63, susceptible line 72 and recombinant congenic strain M (RCS-M) that has a phenotype intermediate between lines 63 and 72 after MDV infection. Three time points of the MDV life cycle in chicken were selected for study: 5 days post infection (dpi), 10dpi and 21dpi, representing the early cytolytic, latent and late cytolytic stages, respectively. We observed similar gene expression profiles at the three time points in line 63 and RCS-M chickens that are both different from line 72. Pathway analysis using Ingenuity Pathway Analysis (IPA) showed that MDV can broadly influence the chickens irrespective of whether they are resistant or susceptible to MD. However, some pathways like cardiac arrhythmia and cardiovascular disease were found to be affected only in line 72; while some networks related to cell-mediated immune response and antigen presentation were enriched only in line 63 and RCS-M. We identified 78 and 30 candidate genes associated with MD resistance, at 10 and 21dpi respectively, by considering genes having the same trend of expression change after MDV infection in lines 63 and RCS-M. On the other hand, by considering genes with the same trend of expression change after MDV infection in lines 72 and RCS-M, we identified 78 and 43 genes at 10 and 21dpi, respectively, which may be associated with MD-susceptibility.

Conclusions: By testing temporal transcriptome changes using three representative chicken lines with different resistance to MD, we identified 108 candidate genes for MD-resistance and 121 candidate genes for MD-susceptibility over the three time points. Genes included in our resistance or susceptibility genes lists that are also involved in more than 5 biofunctions, such as CD8α, IL8, USP18, and CTLA4, are considered to be important genes involved in MD-resistance or -susceptibility. We were also able to identify several biofunctions related with immune response that we believe play an important role in MD-resistance.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A three-dimensional PCA plot of 64 individuals indicating broad transcriptional similarities between line 63 and RCS-M that are both markedly distinct from line 72.
Figure 2
Figure 2
Venn diagram of the differentially expressed genes after MDV infection in different chicken lines at three time points showing the number of genes that are related to MD-resistance and -susceptibility. A. Schema showing the gene sets related to MD-resistance and-susceptibility. R: genes related to MD-resistance; S: genes related to MD-susceptibility; U: line specific genes; N: genes with no definition. B. 10 days post infection. C. 21 days post infection. Line 63.non: non-infected control of line 63 chickens; Line 63.inf: infected line 63 chickens; Line 72.non: non-infected control of line 72 chickens; Line 72.inf: infected line 72 chickens; RCS-M.non: non-infected control of RCS-M; RCS M.inf: infected RCS-M chicken.

Similar articles

Cited by

References

    1. Witter RL, Calnek BW, Buscaglia C, Gimeno IM, Schat KA. Classification of Marek's disease viruses according to pathotype: philosophy and methodology. Avian Pathol. 2005;34(2):75–90. doi: 10.1080/03079450500059255. - DOI - PubMed
    1. Calnek BW, Witter RL. Diseases of Poultry. Ames: Iowa State University Press; 1997.
    1. Davison F, Nair V. Marek's Disease: An Evolving Problem. Oxford: Elsevier Academic Press; 2004.
    1. Burgess SC, Young JR, Baaten BJ, Hunt L, Ross LN, Parcells MS, Kumar PM, Tregaskes CA, Lee LF, Davison TF. Marek's disease is a natural model for lymphomas overexpressing Hodgkin's disease antigen (CD30) Proc Natl Acad Sci USA. 2004;101(38):13879–13884. doi: 10.1073/pnas.0305789101. - DOI - PMC - PubMed
    1. Davison A. Comments on the phylogenetics and evolution of herpesviruses and other large DNA viruses. Virus Res. 2002;82(1-2):127–132. - PubMed

Publication types