Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;15(5):230.
doi: 10.1186/cc10334. Epub 2011 Sep 14.

Bench-to-bedside review: sepsis - from the redox point of view

Affiliations
Review

Bench-to-bedside review: sepsis - from the redox point of view

Michael Éverton Andrades et al. Crit Care. 2011.

Abstract

The pathogenesis of sepsis and its progression to multiple organ dysfunction syndrome and septic shock have been the subject of investigations for nearly half a century. Controversies still exist with regard to understanding the molecular pathophysiology of sepsis in relation to the complex roles played by reactive oxygen species, nitric oxide, complements and cytokines. In the present review we categorise the key turning points in sepsis development and outline the most probable sequence of events leading to cellular dysfunction and organ failure under septic conditions. We have applied an integrative approach in order to fuse current state-of-the-art knowledge about redox processes involving hydrogen peroxide, nitric oxide, superoxide, peroxynitrite and hydroxyl radical, which lead to mitochondrial respiratory dysfunction. Finally, from this point of view, the potential of redox therapy targeting sepsis is discussed.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Key redox reactions in living systems [23]. (1) Fenton reaction; (6) to (8) lipid peroxidation (ROOH) chain reactions.
Figure 2
Figure 2
The 'sepsis redox cycle'. Pathogens activate the immune system, which excessively generates H2O2 and HOCl. Inside the cell, H2O2 provokes the activation of NF-κB (also activated by cytokines and methaemoglobin (MetHb)), which stimulates the expression of inducible nitric oxide synthase (iNOS). These events result in the production of NO in micromolar concentrations. NO provokes inhibition of the electron transfer chain (ETC), which leads to increased production of O2-. In the reaction between NO and O2-, ONOO- is produced, which is then protonated to form peroxynitrous acid (ONOOH), which in turn spontaneously decomposes to two highly reactive species - OH and NO2. These species damage mitochondria and in cooperation with ETC inhibition provoke mitochondrial dysfunction resulting in a fall in ATP. Superoxide is also produced in the cytosol via increased activities of three enzymes: NADPH oxidase, cyclooxygenase (COX)-2 and xanthine oxidase (XO). Indirectly, via DNA damage, poly (ADP-ribose) polymerase (PARP) activation and NAD+ consumption, ONOO- promotes the production of O2- on complex I in the ETC, which depends on the NADH/NAD+ ratio. Superoxide is dismutated in mitochondria by manganese superoxide dismutase (MnSOD) to H2O2, which closes two positive feedback redox loops. Intracellular NO overproduction leads to NO leakage into the plasma. There NO provokes red blood cell (RBC) lysis while HOCH provokes pore formation in RBC membranes, thus freeing MetHb and increasing iron availability, which fuels pathogen proliferation. MetHb provokes the activation of NF-κB, thus closing the NO-generating loop. The plus (+) and minus (-) symbols represent positive and negative effects on concentration, gene expression or activity, respectively. TNFR, TNF receptor.

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome and associated costs of care. Crit Care Med. 2001;29:1303–1311. doi: 10.1097/00003246-200107000-00002. - DOI - PubMed
    1. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, Moreno R, Carlet J, Le Gall JR, Payen D. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A. - DOI - PubMed
    1. Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ. 2007;335:879–883. doi: 10.1136/bmj.39346.495880.AE. - DOI - PMC - PubMed
    1. Thomas L. Germs. N Engl J Med. 1972;287:553–555. doi: 10.1056/NEJM197209142871109. - DOI - PubMed
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101:1644–1655. doi: 10.1378/chest.101.6.1644. - DOI - PubMed

Publication types

Substances