Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 5;195(1):61-7.
doi: 10.1016/j.cbi.2011.09.006. Epub 2011 Oct 4.

Oxidation and turnover of renal metallothioneins after an injection of ferric nitrilotriacetate

Affiliations

Oxidation and turnover of renal metallothioneins after an injection of ferric nitrilotriacetate

Kyong-Son Min et al. Chem Biol Interact. .

Abstract

Metallothioneins (MTs) have demonstrated strong antioxidant properties, however the biological significance of their effect against hydroxyl radical toxicity remains unclear. We investigated the oxidation and turnover of renal MTs in MT-preinduced mice after an injection of ferric nitrilotriacetate (Fe-NTA). Incubation of MTs with Fe-NTA and H(2)O(2) resulted in a loss of their metal-binding properties and a decrease in their thiol concentration independent of binding potential and isoforms. Moreover, in vitro reduction of renal oxidized MT with dithiothreitol (DTT) reversed these oxidative changes. An injection of Fe-NTA oxidized renal preinduced MT in Zn- and Cd-pretreated mice. The metal-binding properties of renal MTs were lost when the Fe-NTA dose was increased. However, analysis of renal MTs using an immunoassay showed that its protein concentration did not decrease 4h after the injection with various Fe-NTA doses. Furthermore, in vitro reduction of renal oxidized MTs with DTT resulted in an increase in the concentration of metals in the MT fraction. These data indicate that radicals produced by Fe-NTA may oxidize MTs in vitro and in vivo. When we investigated the turnover of oxidized MTs in Fe-NTA-treated mice, effects on the concentration of renal (35)S-labeled MTs were opposite to those observed in Cd-pretreated mice. The concentration of preinduced (35)S-labeled MTs in the kidneys of Cd-pretreated mice showed a significant decrease (p<0.05), whereas that of newly synthesized (35)S-labeled MTs showed a considerable increase. These data suggest that degradation of oxidized MTs may be faster than intact MTs. Therefore, the radical scavenging system of MTs may include their induction and degradation during oxidative stress conditions.

PubMed Disclaimer

Similar articles

LinkOut - more resources