Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;128(1-2):38-50.
doi: 10.1016/j.jsbmb.2011.09.007. Epub 2011 Oct 5.

Synthesis of halogenated pregnanes, mechanistic probes of steroid hydroxylases CYP17A1 and CYP21A2

Affiliations

Synthesis of halogenated pregnanes, mechanistic probes of steroid hydroxylases CYP17A1 and CYP21A2

Francis K Yoshimoto et al. J Steroid Biochem Mol Biol. 2012 Jan.

Abstract

The human steroidogenic cytochromes P450 CYP17A1 (P450c17, 17α-hydroxylase/17,20-lyase) and CYP21A2 (P450c21, 21-hydroxylase) are required for the biosynthesis of androgens, glucocorticoids, and mineralocorticoids. Both enzymes hydroxylate progesterone at adjacent, distal carbon atoms and show limited tolerance for substrate modification. Halogenated substrate analogs have been employed for many years to probe cytochrome P450 catalysis and to block sites of reactivity, particularly for potential drugs. Consequently, we developed efficient synthetic approaches to introducing one or more halogen atom to the 17- and 21-positions of progesterone and pregnenolone. In particular, novel 21,21,21-tribromoprogesterone and 21,21,21-trichloroprogesterone were synthesized using the nucleophilic addition of either bromoform or chloroform anion onto an aldehyde precursor as the key step to introduce the trihalomethyl moieties. When incubated with microsomes from yeast expressing human CYP21A2 or CYP17A1 with P450-oxidoreductase, CYP21A2 metabolized 17-fluoroprogesterone to a single product, whereas incubations with CYP17A1 gave no products. Halogenated steroids provide a robust system for exploring the substrate tolerance and catalytic plasticity of human steroid hydroxylases.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Halogenated steroid substrates (118) synthesized for incubation with steroidogenic cytochromes P450, CYP17A1 and CYP21A2.
Figure 2
Figure 2
Explanation of C-17 stereochemistry of 21-F3-pregnenolone – AB ring system omitted for clarity.
Figure 3
Figure 3
In vitro studies of 17-fluoroprogesterone as a substrate for CYP21A2. HPLC traces of incubations: (A) 17-fluoroprogesterone (1) incubation with CYP21A2, (B) 17-fluoroprogesterone (1) incubation with CYP21A2 and ketoconazole, (C) progesterone incubation with CYP21A2, (D) progesterone incubation with CYP21A2 and ketoconazole. The formation and migration of compound F1 is consistent with 17-fluoro-21-hydroxyprogesterone. Conversion of 17-fluoroprogesterone to F1 was inhibited 65% by pre-incubation with ketoconazole, and conversion of progesterone to 11-deoxycorticosterone was inhibited 40% by ketoconazole using the same conditions. The peak at 30 min is due to the change in solvent gradient.
Scheme 1
Scheme 1
Synthesis of 21-F3-progesterone via Zard methodology:
Scheme 2
Scheme 2
21-Cl3-pregnenolone-3-trichloroacetate (9) synthesis using trichloroacetic anhydride:
Scheme 3
Scheme 3
21-trihaloprogesterone syntheses using haloform:
Scheme 4
Scheme 4
17-haloprogesterone syntheses:
Scheme 5
Scheme 5
21-monobromoprogesterone synthesis:
Scheme 6
Scheme 6
16,17-dehydro-21-fluoroprogesterone synthesis:

Similar articles

Cited by

References

    1. Therrell BLJ, Berenbaum SA, Manter-Kapanke V, Simmank J, Korman K, Prentice L, Gonzalez J, Gunn S. Results of screening 1.9 million Texas newborns for 21-hydroxylase-deficient congenital adrenal hyperplasia. Pediatrics. 1998;101:583–590. - PubMed
    1. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet. 1985;37:650–667. - PMC - PubMed
    1. Costa-Santos M, Kater CE, Auchus RJ. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab. 2004;89:49–60. - PubMed
    1. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw KT, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland-Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho-Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Doring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen AL, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvanen AC, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dorr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Volker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Volzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin MR, Mooser V, Melander O, Loos RJ, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–676. - PMC - PubMed
    1. Attard G, Reid AH, Yap TA, Raynaud F, Dowsett M, Settatree S, Barrett M, Parker C, Martins V, Folkerd E, Clark J, Cooper CS, Kaye SB, Dearnaley D, Lee G, de Bono JS. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol. 2008;26:463–4571. - PubMed

Publication types

MeSH terms

LinkOut - more resources