Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;63(4):975-82.
doi: 10.1016/s1734-1140(11)70613-2.

Long-term use of low-dose spironolactone in spontaneously hypertensive rats: effects on left ventricular hypertrophy and stiffness

Affiliations
Free article

Long-term use of low-dose spironolactone in spontaneously hypertensive rats: effects on left ventricular hypertrophy and stiffness

Marcelo P Baldo et al. Pharmacol Rep. 2011.
Free article

Abstract

The aim of the present study was to evaluate the effect of low-dose spironolactone initiated during the early stages of hypertension development and to assess the effects of chronic pressure overload on ventricular remodeling in rats. Male spontaneously hypertensive rats (SHRs) (4 weeks) were randomized to receive daily spironolactone (20 mg/kg) or vehicle (mineral oil) from 4 weeks to 8 months of age. Systolic blood pressure was measured non-invasively by tail-cuff pletysmography at baseline, 4 and 8 months. Hemodynamic assessment was performed at the end of treatment by arterial and ventricular catheterization. An in situ left ventricular pressure-volume curve was created to evaluate dilatation and wall stiffness. Systolic blood pressure at 1 month of age was higher in SHRs than in the Wistar group; it increased throughout the follow-up period and remained elevated with treatment (Wistar: 136 ± 2, SHR: 197 ± 6.8, SHR-Spiro: 207 ± 7.1 mmHg; p < 0.05). Spironolactone reduced cardiac hypertrophy (Wistar: 1.25 ± 0.03 SHR: 1.00 ± 0.03, SHR-Spiro: 0.86 ± 0.02 g; p < 0.05) and left ventricular mass normalized to body weight (Wistar: 2.51 ± 0.06, SHR: 2.70 ± 0.08, 2.53 ± 0.07 mg/g; p < 0.05). Moreover, the left ventricular wall stiffness that was higher in SHRs was partially reduced by spironolactone treatment (Wistar: 0.370 ± 0.032; SHR: 0.825 ± 0.058; SHR-Spiro: 0.650 ± 0.023 mmHg/ml; p < 0.05). Our results show that long-term spironolactone treatment initiated at the early stage of hypertension development reduces left ventricular hypertrophy and wall stiffness in SHRs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances