Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011;14(8):593-632.
doi: 10.1080/10937404.2011.615113.

Toxicology of nanomaterials used in nanomedicine

Affiliations
Review

Toxicology of nanomaterials used in nanomedicine

Jinshun Zhao et al. J Toxicol Environ Health B Crit Rev. 2011.

Abstract

With the development of nanotechnology, nanomaterials are being widely used in many industries as well as in medicine and pharmacology. Despite the many proposed advantages of nanomaterials, increasing concerns have been expressed on their potential adverse human health effects. In recent years, application of nanotechnology in medicine has been defined as nanomedicine. Techniques in nanomedicine make it possible to deliver therapeutic agents into targeted specific cells, cellular compartments, tissues, and organs by using nanoparticulate carriers. Because nanoparticles possess different physicochemical properties than their fine-sized analogues due to their extremely small size and large surface area, they need to be evaluated separately for toxicity and adverse health effects. In addition, in the field of nanomedicine, intravenous and subcutaneous injections of nanoparticulate carriers deliver exogenous nanoparticles directly into the human body without passing through the normal absorption process. These nanoparticulate carriers themselves may be responsible for toxicity and interaction with biological macromolecules within the human body. Second, insoluble nanoparticulate carriers may accumulate in human tissues or organs. Therefore, it is necessary to address the potential health and safety implications of nanomaterials used in nanomedicine. Toxicological studies for biosafety evaluation of these nanomaterials will be important for the continuous development of nanomedical science. This review summarizes the current knowledge on toxicology of nanomaterials, particularly on those used in nanomedicine.

PubMed Disclaimer

Publication types

LinkOut - more resources