Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;4(6):947-57.
doi: 10.1161/CIRCEP.111.964908. Epub 2011 Oct 18.

Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias

Affiliations

Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias

Luis A Gonano et al. Circ Arrhythm Electrophysiol. 2011 Dec.

Abstract

Background: Digitalis-induced Na(+) accumulation results in an increase in Ca(2+)(i) via the Na(+)/Ca(2+) exchanger, leading to enhanced sarcoplasmic reticulum (SR) Ca(2+) load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca(2+)(i) could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved.

Methods and results: In paced rat ventricular myocytes (0.5 Hz), 50 μmol/L ouabain increased contraction amplitude by 160 ± 5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca(2+) waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 μmol/L KN93 but not by 2.5 μmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 μmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca(2+) content and Ca(2+) spark frequency, indicative of enhanced SR Ca(2+) leak. KN93 suppressed the ouabain-induced increase in Ca(2+) spark frequency without affecting SR Ca(2+) content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice.

Conclusions: These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca(2+) leak from the SR, is the underlying mechanism involved.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms