Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Sep-Oct;26(5):947-54.

Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants

Affiliations
  • PMID: 22010075
Comparative Study

Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants

Kenji Ito et al. Int J Oral Maxillofac Implants. 2011 Sep-Oct.

Abstract

Purpose: The aim of this comparative study was to investigate cell-based effective bone engineering and the correlation between the osseointegration of dental implants and tissue-engineered bone using dental pulp stem cells (DPSC), bone marrow stem cells (BMSC), and periosteal cells (PC).

Materials and methods: The first molar and all premolars were extracted from the mandibles of three dogs, and in each dog, six bone defects (three on each side) were prepared with a 10-mm-diameter trephine bur after 4 weeks. Different materials were implanted in the defects and the sites were allowed to heal. The experimental groups were as follows: (1) dog DPSC and platelet-rich plasma (PRP) (dDPSC/PRP), (2) dog BMSC and PRP (dBMSC/PRP), (3) dog PC and PRP (dPC/PRP), and (4) control (defect only). Eight weeks later, dental implants were placed in the defects. After another 8 weeks, the amount of bone regeneration was assessed by histologic and histomorphometric analyses (bone-implant contact).

Results: The mean bone-implant contact values were 66.7% ± 3.6% for group 1 (dDPSC/PRP), 62.5% ± 3.1% for group 2 (dBMSC/PRP), 39.4% ± 2.4% for group 3 (dPC/PRP), and 30.3% ± 2.6% for the control group.

Conclusions: DPSC showed the highest osteogenic potential and may be a useful cell source for tissue-engineered bone around dental implants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances