Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Jun;65(2):145-74.
doi: 10.1086/416717.

Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation

Affiliations
Review

Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation

K B Storey et al. Q Rev Biol. 1990 Jun.

Abstract

For many animals, the best defense against harsh environmental conditions is an escape to a hypometabolic or dormant state. Facultative metabolic rate depression is the common adaptive strategy of anaerobiosis, hibernation, and estivation, as well as a number of other arrested states. By reducing metabolic rate by a factor ranging from 5 to 100 fold or more, animals gain a comparable extension of survival time that can support months or even years of dormancy. The present review focuses on the molecular control mechanisms that regulate and coordinate cellular metabolism for the transition into dormancy. These include reversible control over the activity state of enzymes via protein phosphorylation or dephosphorylation reactions, pathway regulation via the association or dissociation of particle-bound enzyme complexes, and fructose-2,6-bisphosphate regulation of the use of carbohydrate reserves for biosynthetic purposes. These mechanisms, their interactions, and the regulatory signals (e.g., second messenger molecules, pH) that coordinate them form a common molecular basis for metabolic depression in anoxia-tolerant vertebrates (goldfish, turtles) and invertebrates (marine molluscs), hibernation in small mammals, and estivation in land snails and terrestrial toads.

PubMed Disclaimer

Similar articles

Cited by

Publication types