Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Nov;31(11):2378-82.
doi: 10.1161/ATVBAHA.111.226688.

MicroRNA modulation of cholesterol homeostasis

Affiliations
Review

MicroRNA modulation of cholesterol homeostasis

Carlos Fernández-Hernando et al. Arterioscler Thromb Vasc Biol. 2011 Nov.

Abstract

Although the roles of the sterol response element binding protein-1 (SREBP1) and SREBP2 transcription factors in regulating fatty acid and cholesterol synthesis and uptake have been known for some time, it was recently discovered that 2 related microRNAs (miRs), miR-33a and miR-33b, are embedded in these genes. Studies indicate that miR-33a and miR-33b act with their host genes, Srebp2 and Srebp1, respectively, to reciprocally regulate cholesterol homeostasis and fatty acid metabolism in a negative feedback loop. miR-33 has been shown to posttranscriptionally repress key genes involved in cellular cholesterol export and high-density lipoprotein metabolism (Abca1, Abcg1, Npc1), fatty acid oxidation (Crot, Cpt1a, Hadhb, Ampk), and glucose metabolism (Sirt6, Irs2). Delivery of inhibitors of miR-33 in vitro and in vivo relieves repression of these genes, resulting in upregulation of the associated metabolic pathways. In mouse models, miR-33 antagonism has proven to be an effective strategy for increasing plasma high-density lipoprotein cholesterol and fatty acid oxidation and protecting from atherosclerosis. These exciting findings have opened up promising new avenues for the development of therapeutics to treat dyslipidemia and other metabolic disorders.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Evolutionary conserved sequences in the 3′UTR of ABCA1 is partially complementary to miR-33. Annealing of miR-33 to some sequences are shown
Figure 2
Figure 2
Pathways by which activated miR-33 may contribute to regulating cholesterol, fatty acid and glucose metabolism, cell proliferation and transcription. Transcriptional activation of SREBP-2 under low intracellular cholesterol levels and SREBP-1 upon insulin-LXR stimulation leads the co-transcription of miR-33a and miR-33b respectively. miR-33a/b target several genes involved in the regulation of cholesterol efflux and trafficking, fatty acid oxidation, cell proliferation and cell cycle progression, and glucose metabolism.

Similar articles

Cited by

References

    1. Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–676. - PubMed
    1. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. - PubMed
    1. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233. - PMC - PubMed
    1. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–114. - PubMed
    1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. - PubMed

Publication types