Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Aug;259(2 Pt 2):R197-203.
doi: 10.1152/ajpregu.1990.259.2.R197.

Influence of temperature on mechanics and energetics of muscle contraction

Affiliations
Review

Influence of temperature on mechanics and energetics of muscle contraction

J A Rall et al. Am J Physiol. 1990 Aug.

Abstract

Results gleaned from use of temperature as a probe to study skeletal muscle performance and mechanisms of activation and contraction are reviewed. Steady-state and non-steady-state responses to changes in temperature are considered. Temperature sensitivities, Q10 values, of mechanical and energetic parameters range from nearly 1 to greater than 5 in frog skeletal muscle. Factors that are less temperature sensitive (Q10 less than or equal to 1.5) are peak tetanic force, instantaneous stiffness, curvature of force-velocity relation, magnitude of labile heat, and mechanical efficiency. Rates with intermediate temperature sensitivities (Q10 greater than 2 but less than 3) include rate of isometric force development, maximum shortening velocity, and relaxation from a brief tetanus. Rates with high temperature sensitivities (Q10 greater than 3) include cross-bridge turnover during an isometric tetanus, isometric economy, maximum power output, Ca2+ sequestration by sarcoplasmic reticulum, relaxation from a prolonged tetanus, and recovery metabolism. The observation that the Q10 for relaxation rate depends on tetanic duration can be explained in terms of the possible role of parvalbumin as a soluble relaxing factor.

PubMed Disclaimer

LinkOut - more resources