Optimization of nonlinear dose- and concentration-response models utilizing evolutionary computation
- PMID: 22013401
- PMCID: PMC3186933
- DOI: 10.2203/dose-response.09-030.Beam
Optimization of nonlinear dose- and concentration-response models utilizing evolutionary computation
Abstract
An essential part of toxicity and chemical screening is assessing the concentrated related effects of a test article. Most often this concentration-response is a nonlinear, necessitating sophisticated regression methodologies. The parameters derived from curve fitting are essential in determining a test article's potency (EC(50)) and efficacy (E(max)) and variations in model fit may lead to different conclusions about an article's performance and safety. Previous approaches have leveraged advanced statistical and mathematical techniques to implement nonlinear least squares (NLS) for obtaining the parameters defining such a curve. These approaches, while mathematically rigorous, suffer from initial value sensitivity, computational intensity, and rely on complex and intricate computational and numerical techniques. However if there is a known mathematical model that can reliably predict the data, then nonlinear regression may be equally viewed as parameter optimization. In this context, one may utilize proven techniques from machine learning, such as evolutionary algorithms, which are robust, powerful, and require far less computational framework to optimize the defining parameters. In the current study we present a new method that uses such techniques, Evolutionary Algorithm Dose Response Modeling (EADRM), and demonstrate its effectiveness compared to more conventional methods on both real and simulated data.
Keywords: Evolutionary Algorithm; Hill-Slope Model; Nonlinear Regression; Parameter Estimation.
Figures












Similar articles
-
Nonlinear Dose-Response Modeling of High-Throughput Screening Data Using an Evolutionary Algorithm.Dose Response. 2020 May 22;18(2):1559325820926734. doi: 10.1177/1559325820926734. eCollection 2020 Apr-Jun. Dose Response. 2020. PMID: 32547333 Free PMC article.
-
A multi-model framework to estimate perfusion parameters using contrast-enhanced ultrasound imaging.Med Phys. 2019 Feb;46(2):590-600. doi: 10.1002/mp.13340. Epub 2019 Jan 21. Med Phys. 2019. PMID: 30554408 Free PMC article.
-
Multi-start Evolutionary Nonlinear OpTimizeR (MENOTR): A hybrid parameter optimization toolbox.Biophys Chem. 2021 Dec;279:106682. doi: 10.1016/j.bpc.2021.106682. Epub 2021 Sep 29. Biophys Chem. 2021. PMID: 34634538 Free PMC article.
-
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.PLoS One. 2013;8(3):e56310. doi: 10.1371/journal.pone.0056310. Epub 2013 Mar 4. PLoS One. 2013. PMID: 23469172 Free PMC article.
-
Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic 18 F-FDG PET.Med Phys. 2019 Mar;46(3):1260-1271. doi: 10.1002/mp.13366. Epub 2019 Jan 22. Med Phys. 2019. PMID: 30592540
Cited by
-
A comparison of association methods for cytotoxicity mapping in pharmacogenomics.Front Genet. 2011 Dec 14;2:86. doi: 10.3389/fgene.2011.00086. eCollection 2011. Front Genet. 2011. PMID: 22303380 Free PMC article.
-
A Universal Delayed Difference Model Fitting Dose-response Curves.Dose Response. 2021 Dec 15;19(4):15593258211062785. doi: 10.1177/15593258211062785. eCollection 2021 Oct-Dec. Dose Response. 2021. PMID: 34987337 Free PMC article.
-
Nonlinear Dose-Response Modeling of High-Throughput Screening Data Using an Evolutionary Algorithm.Dose Response. 2020 May 22;18(2):1559325820926734. doi: 10.1177/1559325820926734. eCollection 2020 Apr-Jun. Dose Response. 2020. PMID: 32547333 Free PMC article.
-
Current Methods for Quantifying Drug Synergism.Proteom Bioinform. 2019 Jul;1(2):43-48. Epub 2019 Jul 22. Proteom Bioinform. 2019. PMID: 32043089 Free PMC article.
-
Evaluation of statistical approaches for association testing in noisy drug screening data.BMC Bioinformatics. 2022 May 18;23(1):188. doi: 10.1186/s12859-022-04693-z. BMC Bioinformatics. 2022. PMID: 35585485 Free PMC article.
References
-
- Bates DM, Watts DG. Nonlinear Regression, Analysis and its Applications. John Wiley; New York: 1988.
-
- Björck A. Numerical methods for least squares problems. SIAM; Philadelphia: 1996.
-
- Chamjangali MA, Beglari M, Bagherian G. Prediction of cytotoxicity data (CC50) of anti-HIV 5-pheny-l-phenylamino-1H-imidazole derivatives by artificial neural network trained with Levenberg-Marquardt algorithm. J of Molecular Graphics and Modelling. 2007;26(1):360–367. - PubMed
-
- Delahaye D, Puechmorel S. Air Traffic Controller Keyboard Optimization by Artificial Evolution. Lect Not Comp Sci. 2004;2936:177–188.
-
- Dennis JE, Gay DM, Welsch RE. Algorithm 573. NL2SOL — An adaptive nonlinear least-squares algorithm, ACM Trans. Math. Software. 1981;7:369–383.
Grants and funding
LinkOut - more resources
Full Text Sources