Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr;26(4):682-92.
doi: 10.1038/leu.2011.278. Epub 2011 Oct 21.

Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia

Affiliations

Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia

D J P M Stumpel et al. Leukemia. 2012 Apr.

Abstract

MLL-rearranged infant acute lymphoblastic leukemia (ALL) is an aggressive type of leukemia characterized by a unique gene-expression profile. We uncovered that the activation of particular (proto-onco)genes is mediated by promoter hypomethylation. In search for therapeutic agents capable of targeting these potential cancer-promoting genes, we applied connectivity mapping on a gene expression signature based on the genes most significantly hypomethylated in t(4;11)-positive infant ALL as compared with healthy bone marrows. This analysis revealed histone deacetylase (HDAC) inhibitors as suitable candidates to reverse the unfavorable gene signature. We show that HDAC inhibitors effectively induce leukemic cell death in t(4;11)-positive primary infant ALL cells, accompanied by downregulation of MYC, SET, RUNX1, RAN as well as the MLL-AF4 fusion product. Furthermore, DNA methylation was restored after HDAC inhibitor exposure. Our data underlines the essential role for epigenetic de-regulation in MLL-rearranged ALL. Furthermore, we show, for the first time, that connectivity mapping can indirectly be applied on DNA methylation patterns, providing a rationale for HDAC inhibition in t(4;11)-positive leukemias. Given the presented potential of HDAC inhibitors to target important proto-oncogenes including the leukemia-specific MLL fusion in vitro, these agents should urgently be tested in in vivo models and subsequent clinical trials.

PubMed Disclaimer

Publication types

MeSH terms

Substances