Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: Plasticity of integration mechanism
- PMID: 22016843
- PMCID: PMC3190273
- DOI: 10.4161/mge.1.1.16485
Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: Plasticity of integration mechanism
Abstract
Restriction-like endonuclease (RLE) bearing non-LTR retrotransposons are site-specific elements that integrate into the genome through a target primed reverse transcription mechanism (TPRT). R2 elements have been used as a model system for investigating non-LTR retrotransposon integration. We previously demonstrated that R2 retrotransposons require two subunits of the element-encoded multifunctional protein to integrate-one subunit bound upstream of the insertion site and one bound downstream. R2 elements have been phylogenetically categorized into four clades: R2-A, B, C and D, that diverged from a common ancestor more than 850 million years ago. All R2 elements target the same sequence within 28S rDNA. The amino-terminal domain of R2Bm, an R2-D clade element, contains a single zinc finger and a Myb motif that are responsible for binding R2 protein downstream of the insertion site. Target site recognition is of interest as it is the first step in the integration reaction and may help elucidate evolutionary history and integration mechanism. The amino-terminal domain of R2-A clade members contains three zinc fingers and a Myb motif. We show here that R2Lp, an R2-A clade member, uses its amino-terminal DNA binding motifs to bind upstream of the insertion site. Because the R2-A and R2-D clade elements recognize 28S rDNA differently, we conclude the A- and D-clades represent independent targeting events to the 28S site. Our results also indicate a certain plasticity of insertional mechanics exists between the two clades.
Figures







Similar articles
-
Targeting novel sites: The N-terminal DNA binding domain of non-LTR retrotransposons is an adaptable module that is implicated in changing site specificities.Mob Genet Elements. 2011 Sep;1(3):169-178. doi: 10.4161/mge.1.3.18453. Epub 2011 Sep 1. Mob Genet Elements. 2011. PMID: 22479684 Free PMC article.
-
Identification of rDNA-specific non-LTR retrotransposons in Cnidaria.Mol Biol Evol. 2006 Oct;23(10):1984-93. doi: 10.1093/molbev/msl067. Epub 2006 Jul 26. Mol Biol Evol. 2006. PMID: 16870681
-
Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction.Nucleic Acids Res. 2005 Nov 10;33(20):6461-8. doi: 10.1093/nar/gki957. Print 2005. Nucleic Acids Res. 2005. PMID: 16284201 Free PMC article.
-
Site-specific non-LTR retrotransposons.Microbiol Spectr. 2015 Apr;3(2):MDNA3-0001-2014. doi: 10.1128/microbiolspec.MDNA3-0001-2014. Microbiol Spectr. 2015. PMID: 26104700 Review.
-
Biology and utilization of R2 retrotransposons.RNA Biol. 2025 Dec;22(1):1-8. doi: 10.1080/15476286.2025.2521890. Epub 2025 Jun 25. RNA Biol. 2025. PMID: 40566873 Free PMC article. Review.
Cited by
-
The Wide Distribution and Change of Target Specificity of R2 Non-LTR Retrotransposons in Animals.PLoS One. 2016 Sep 23;11(9):e0163496. doi: 10.1371/journal.pone.0163496. eCollection 2016. PLoS One. 2016. PMID: 27662593 Free PMC article.
-
Conserved and divergent DNA recognition specificities and functions of R2 retrotransposon N-terminal domains.Cell Rep. 2024 May 28;43(5):114239. doi: 10.1016/j.celrep.2024.114239. Epub 2024 May 15. Cell Rep. 2024. PMID: 38753487 Free PMC article.
-
Randomly detected genetically modified (GM) maize (Zea mays L.) near a transport route revealed a fragile 45S rDNA phenotype.PLoS One. 2013 Sep 9;8(9):e74060. doi: 10.1371/journal.pone.0074060. eCollection 2013. PLoS One. 2013. PMID: 24040165 Free PMC article.
-
Integration site selection by retroviruses and transposable elements in eukaryotes.Nat Rev Genet. 2017 May;18(5):292-308. doi: 10.1038/nrg.2017.7. Epub 2017 Mar 13. Nat Rev Genet. 2017. PMID: 28286338 Review.
-
Non-LTR R2 element evolutionary patterns: phylogenetic incongruences, rapid radiation and the maintenance of multiple lineages.PLoS One. 2013;8(2):e57076. doi: 10.1371/journal.pone.0057076. Epub 2013 Feb 25. PLoS One. 2013. PMID: 23451148 Free PMC article.
References
-
- Burke WD, Malik HS, Rich SM, Eickbush TH. Ancient lineages of non-LTR retrotransposons in the primitive eukaryote, Giardia lamblia. Mol Biol Evol. 2002;19:619–630. - PubMed
-
- Burke WD, Malik HS, Jones JP, Eickbush TH. The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol Biol Evol. 1999;16:502–511. - PubMed
-
- Kojima KK, Fujiwara H. Long-term inheritance of the 28S rDNA-specific retrotransposon R2. Mol Biol Evol. 2005;22:2157–2165. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources