Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Aug 25;265(24):14536-43.

Molecular analysis of the Escherichia coli ferric enterobactin receptor FepA

Affiliations
  • PMID: 2201687
Free article

Molecular analysis of the Escherichia coli ferric enterobactin receptor FepA

S K Armstrong et al. J Biol Chem. .
Free article

Abstract

In Escherichia coli, the outer membrane protein FepA is a receptor for the siderophore complex ferric enterobactin and for colicins B and D. To identify protein domains important for FepA activity, the effects of deletion and linker insertion mutations on receptor structure and function were examined. In-frame internal deletion mutations removing sequences encoding up to 304 amino acid residues resulted in functionally defective FepA polypeptides, although most were translocated efficiently to the outer membrane. One exception, a derivative lacking 87 internal amino acid residues near the N terminus, showed an inability to transport ferric enterobactin but retained limited colicin receptor function. Analysis of cells carrying 3'-terminal fepA deletion mutations suggested that residues within the C terminus of FepA may be involved in secretion and proper translocation of the protein to the outer membrane. Introduction of the peptide Leu-Glu after FepA residues 55, 142, or 324 severely impaired receptor function for all three ligands, while the same insertion after residues 339 or 359 had virtually no detrimental effect on FepA function. Foreign peptides inserted after residues 204 or 635 restricted colicin B and D function only, leaving ferric enterobactin transport ability at near wild-type levels. The results presented in this study have identified key regions of FepA potentially involved in receptor function and demonstrate the presence of both shared and unique ligand-responsive domains.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources