Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;27(7):1057-64.

[Preparation of recombinant cutinase and its application in surface modification of poly (ethylene terephthalate)]

[Article in Chinese]
Affiliations
  • PMID: 22016990

[Preparation of recombinant cutinase and its application in surface modification of poly (ethylene terephthalate)]

[Article in Chinese]
Yao Zhang et al. Sheng Wu Gong Cheng Xue Bao. 2011 Jul.

Abstract

Fermentation and induction conditions for recombinant Escherichia coli expressing Thermobifida fusca cutinase were optimized in flasks and 3L fermenter. Surface modification of poly (ethylene terephthalate) fibers with cutinase was also discussed. The results showed that, cutinase yield reached 128 U/mL by adding 2 g/L inducer lactose and 0.5% glycine. In the fed-batch culture in a 3 L fermenter, the maximum biomass cutinase activity was up to 506 U/mL, which is the highest bacterial cutinase activity reported by far. Recombinant cutinase was used to modify polyester fibers and terephthalic acid substance was detected by using UV analysis. The dyeing and wetting properties of cutinase treated fibers were higher than untreated fibers. Combined utilization of cutinase and Triton X-100 can significantly improve the hydrophilicity of polyester. This is the first report of surface modification on polyester fibers by bacterial cutinase.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms