The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation
- PMID: 22017872
- PMCID: PMC3874842
- DOI: 10.1016/j.molcel.2011.09.010
The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation
Abstract
We have determined the three-dimensional (3D) architecture of the Caulobacter crescentus genome by combining genome-wide chromatin interaction detection, live-cell imaging, and computational modeling. Using chromosome conformation capture carbon copy (5C), we derive ~13 kb resolution 3D models of the Caulobacter genome. The resulting models illustrate that the genome is ellipsoidal with periodically arranged arms. The parS sites, a pair of short contiguous sequence elements known to be involved in chromosome segregation, are positioned at one pole, where they anchor the chromosome to the cell and contribute to the formation of a compact chromatin conformation. Repositioning these elements resulted in rotations of the chromosome that changed the subcellular positions of most genes. Such rotations did not lead to large-scale changes in gene expression, indicating that genome folding does not strongly affect gene regulation. Collectively, our data suggest that genome folding is globally dictated by the parS sites and chromosome segregation.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures







Comment in
-
Bacterial physiology. Seeing Caulobacter in 3D.Nat Rev Microbiol. 2011 Nov 16;9(12):834-5. doi: 10.1038/nrmicro2703. Nat Rev Microbiol. 2011. PMID: 22085857 No abstract available.
-
Three-dimensional genetics.Nat Methods. 2012 Jan;9(1):14-5. doi: 10.1038/nmeth.1843. Nat Methods. 2012. PMID: 22312629 No abstract available.
Similar articles
-
A physical approach to segregation and folding of the Caulobacter crescentus genome.Mol Microbiol. 2011 Dec;82(6):1311-5. doi: 10.1111/j.1365-2958.2011.07898.x. Epub 2011 Nov 22. Mol Microbiol. 2011. PMID: 22029843
-
Caulobacter requires a dedicated mechanism to initiate chromosome segregation.Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15435-40. doi: 10.1073/pnas.0807448105. Epub 2008 Sep 29. Proc Natl Acad Sci U S A. 2008. PMID: 18824683 Free PMC article.
-
Chromosome Dynamics in Bacteria: Triggering Replication at the Opposite Location and Segregation in the Opposite Direction.mBio. 2019 Jul 30;10(4):e01002-19. doi: 10.1128/mBio.01002-19. mBio. 2019. PMID: 31363028 Free PMC article.
-
Chromosome conformation capture assays in bacteria.Methods. 2012 Nov;58(3):212-20. doi: 10.1016/j.ymeth.2012.06.017. Epub 2012 Jul 6. Methods. 2012. PMID: 22776362 Review.
-
Linear ordering and dynamic segregation of the bacterial chromosome.Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9175-6. doi: 10.1073/pnas.0403722101. Epub 2004 Jun 15. Proc Natl Acad Sci U S A. 2004. PMID: 15199189 Free PMC article. Review. No abstract available.
Cited by
-
Plasmid Detection, Characterization, and Ecology.Microbiol Spectr. 2015 Feb;3(1):PLAS-0038-2014. doi: 10.1128/microbiolspec.PLAS-0038-2014. Microbiol Spectr. 2015. PMID: 26104560 Free PMC article. Review.
-
Cell cycle progression in Caulobacter requires a nucleoid-associated protein with high AT sequence recognition.Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5952-E5961. doi: 10.1073/pnas.1612579113. Epub 2016 Sep 19. Proc Natl Acad Sci U S A. 2016. PMID: 27647925 Free PMC article.
-
Shedding Light on Bacterial Chromosome Structure: Exploring the Significance of 3C-Based Approaches.Methods Mol Biol. 2024;2819:3-26. doi: 10.1007/978-1-0716-3930-6_1. Methods Mol Biol. 2024. PMID: 39028499 Review.
-
Resolving spatial inconsistencies in chromosome conformation measurements.Algorithms Mol Biol. 2013 Mar 9;8(1):8. doi: 10.1186/1748-7188-8-8. Algorithms Mol Biol. 2013. PMID: 23497444 Free PMC article.
-
Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB.Microbiology (Reading). 2014 Nov;160(Pt 11):2406-2420. doi: 10.1099/mic.0.081216-0. Epub 2014 Aug 19. Microbiology (Reading). 2014. PMID: 25139949 Free PMC article.
References
-
- Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, et al. Determining the architectures of macromolecular assemblies. Nature. 2007;450:683–694. - PubMed
-
- Alley MR, Maddock JR, Shapiro L. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proteolysis. Science. 1993;259:1754–1757. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous