Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;50(2):265-73.
doi: 10.1016/j.fct.2011.10.039. Epub 2011 Oct 14.

Studies on the protective effect of dietary fish oil on cisplatin induced nephrotoxicity in rats

Affiliations

Studies on the protective effect of dietary fish oil on cisplatin induced nephrotoxicity in rats

Ashreeb Naqshbandi et al. Food Chem Toxicol. 2012 Feb.

Abstract

Cisplatin (CP) is a major antineoplastic drug for the treatment of solid tumors, however, dose dependent nephrotoxicity remains the major concern for its long term use. Several agents/strategies were attempted to prevent CP nephrotoxicity but were not found suitable for clinical practice. Dietary fish oil (FO) enriched in ω-3 fatty acids has been shown to prevent/reduce the progression of certain types of cancers, cardiovascular and renal disorders. The present study was undertaken to see whether FO can prevent CP-induced nephrotoxic and other deleterious effects. Rats were prefed experimental diets for 10days and then received a single dose of CP (6mg/kg body weight) intraperitoneally while still on diet. Serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM) and oxidative stress in rat kidney were analyzed. CP nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. CP decreased the activities of metabolic enzymes, antioxidant defense system and BBM enzymes. In contrast, FO alone increased enzyme activities of carbohydrate metabolism and brush border membrane (BBM). FO feeding to CP treated rats markedly enhanced resistance to CP-elicited deleterious effects. Dietary FO supplementation ameliorated CP induced specific metabolic alterations and oxidative damage due to its intrinsic biochemical antioxidant properties.

PubMed Disclaimer

Publication types

LinkOut - more resources